Categorifications of Non-Integer Quivers: Types $H_4$, $H_3$ and $I_2(2n+1)$
HTML articles powered by AMS MathViewer
- by Drew Damien Duffield and Pavel Tumarkin;
- Represent. Theory 28 (2024), 275-327
- DOI: https://doi.org/10.1090/ert/671
- Published electronically: August 29, 2024
- HTML | PDF
Abstract:
We define the notion of a weighted unfolding of quivers with real weights, and use this to provide a categorification of mutations of quivers of finite types $H_4$, $H_3$ and $I_2(2n+1)$. In particular, the (un)folding induces a semiring action on the categories associated to the unfolded quivers of types $E_8$, $D_6$ and $A_{2n}$ respectively. We then define the tropical seed pattern on the folded quivers, which includes $c$- and $g$-vectors, and show its compatibility with the unfolding.References
- Takahide Adachi, Osamu Iyama, and Idun Reiten, $\tau$-tilting theory, Compos. Math. 150 (2014), no. 3, 415–452. MR 3187626, DOI 10.1112/S0010437X13007422
- Maurice Auslander, Idun Reiten, and Sverre O. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, vol. 36, Cambridge University Press, Cambridge, 1997. Corrected reprint of the 1995 original. MR 1476671
- Thomas Brüstle, David Smith, and Hipolito Treffinger, Wall and chamber structure for finite-dimensional algebras, Adv. Math. 354 (2019), 106746, 31. MR 3989130, DOI 10.1016/j.aim.2019.106746
- Aslak Bakke Buan and Robert Marsh, Cluster-tilting theory, Trends in representation theory of algebras and related topics, Contemp. Math., vol. 406, Amer. Math. Soc., Providence, RI, 2006, pp. 1–30. MR 2258039, DOI 10.1090/conm/406/07651
- Aslak Bakke Buan and Bethany Rose Marsh, $\tau$-exceptional sequences, J. Algebra 585 (2021), 36–68. MR 4272561, DOI 10.1016/j.jalgebra.2021.04.038
- Aslak Bakke Buan, Robert Marsh, Markus Reineke, Idun Reiten, and Gordana Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), no. 2, 572–618. MR 2249625, DOI 10.1016/j.aim.2005.06.003
- Aslak Bakke Buan, Robert J. Marsh, and Idun Reiten, Cluster-tilted algebras, Trans. Amer. Math. Soc. 359 (2007), no. 1, 323–332. MR 2247893, DOI 10.1090/S0002-9947-06-03879-7
- Aslak Bakke Buan, Bethany R. Marsh, and Idun Reiten, Cluster mutation via quiver representations, Comment. Math. Helv. 83 (2008), no. 1, 143–177. MR 2365411, DOI 10.4171/CMH/121
- M. C. R. Butler and Claus Michael Ringel, Auslander-Reiten sequences with few middle terms and applications to string algebras, Comm. Algebra 15 (1987), no. 1-2, 145–179. MR 876976, DOI 10.1080/00927878708823416
- Philippe Caldero and Frédéric Chapoton, Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv. 81 (2006), no. 3, 595–616. MR 2250855, DOI 10.4171/CMH/65
- Philippe Caldero, Frédéric Chapoton, and Ralf Schiffler, Quivers with relations and cluster tilted algebras, Algebr. Represent. Theory 9 (2006), no. 4, 359–376. MR 2250652, DOI 10.1007/s10468-006-9018-1
- P. Caldero, F. Chapoton, and R. Schiffler, Quivers with relations arising from clusters ($A_n$ case), Trans. Amer. Math. Soc. 358 (2006), no. 3, 1347–1364. MR 2187656, DOI 10.1090/S0002-9947-05-03753-0
- Philippe Caldero and Bernhard Keller, From triangulated categories to cluster algebras, Invent. Math. 172 (2008), no. 1, 169–211. MR 2385670, DOI 10.1007/s00222-008-0111-4
- W. W. Crawley-Boevey, Maps between representations of zero-relation algebras, J. Algebra 126 (1989), no. 2, 259–263. MR 1024991, DOI 10.1016/0021-8693(89)90304-9
- Raika Dehy and Bernhard Keller, On the combinatorics of rigid objects in 2-Calabi-Yau categories, Int. Math. Res. Not. IMRN 11 (2008), Art. ID rnn029, 17. MR 2428855, DOI 10.1093/imrn/rnn029
- Bangming Deng and Jie Du, Frobenius morphisms and representations of algebras, Trans. Amer. Math. Soc. 358 (2006), no. 8, 3591–3622. MR 2218990, DOI 10.1090/S0002-9947-06-03812-8
- Bangming Deng and Jie Du, Folding derived categories with Frobenius functors, J. Pure Appl. Algebra 208 (2007), no. 3, 1023–1050. MR 2283443, DOI 10.1016/j.jpaa.2006.05.001
- Vinay V. Deodhar, On the root system of a Coxeter group, Comm. Algebra 10 (1982), no. 6, 611–630. MR 647210, DOI 10.1080/00927878208822738
- Harm Derksen, Jerzy Weyman, and Andrei Zelevinsky, Quivers with potentials and their representations II: applications to cluster algebras, J. Amer. Math. Soc. 23 (2010), no. 3, 749–790. MR 2629987, DOI 10.1090/S0894-0347-10-00662-4
- Vlastimil Dlab and Claus Michael Ringel, On algebras of finite representation type, Carleton Mathematical Lecture Notes, No. 2, Carleton University, Department of Mathematics, Ottawa, ON, 1973. MR 347907
- D. D. Duffield and P. Tumarkin, Categorifications of non-integer quivers: Type ${I}_2(2n)$, arXiv:2302.06988, 2023.
- Matthew J. Dyer, Embeddings of root systems. I. Root systems over commutative rings, J. Algebra 321 (2009), no. 11, 3226–3248. MR 2510047, DOI 10.1016/j.jalgebra.2008.10.008
- Anna Felikson, Michael Shapiro, and Pavel Tumarkin, Cluster algebras and triangulated orbifolds, Adv. Math. 231 (2012), no. 5, 2953–3002. MR 2970470, DOI 10.1016/j.aim.2012.07.032
- Anna Felikson, Michael Shapiro, and Pavel Tumarkin, Cluster algebras of finite mutation type via unfoldings, Int. Math. Res. Not. IMRN 8 (2012), 1768–1804. MR 2920830, DOI 10.1093/imrn/rnr072
- Anna Felikson and Pavel Tumarkin, Mutation-finite quivers with real weights, Forum Math. Sigma 11 (2023), Paper No. e9, 22. MR 4549712, DOI 10.1017/fms.2023.8
- A. Felikson, P. Tumarkin, and E. Yildirim, Polytopal realizations of non-crystallographic associahedra, arXiv:2401.08285, 2024.
- Sergey Fomin and Andrei Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), no. 2, 497–529. MR 1887642, DOI 10.1090/S0894-0347-01-00385-X
- Sergey Fomin and Andrei Zelevinsky, Cluster algebras. II. Finite type classification, Invent. Math. 154 (2003), no. 1, 63–121. MR 2004457, DOI 10.1007/s00222-003-0302-y
- Sergey Fomin and Andrei Zelevinsky, Cluster algebras. IV. Coefficients, Compos. Math. 143 (2007), no. 1, 112–164. MR 2295199, DOI 10.1112/S0010437X06002521
- Peter Gabriel, Unzerlegbare Darstellungen. I, Manuscripta Math. 6 (1972), 71–103; correction, ibid. 6 (1972), 309 (German, with English summary). MR 332887, DOI 10.1007/BF01298413
- Sergei I. Gelfand and Yuri I. Manin, Methods of homological algebra, 2nd ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. MR 1950475, DOI 10.1007/978-3-662-12492-5
- Mark Gross, Paul Hacking, Sean Keel, and Maxim Kontsevich, Canonical bases for cluster algebras, J. Amer. Math. Soc. 31 (2018), no. 2, 497–608. MR 3758151, DOI 10.1090/jams/890
- Bernhard Keller, On triangulated orbit categories, Doc. Math. 10 (2005), 551–581. MR 2184464, DOI 10.4171/dm/199
- Philipp Lampe, On the approximate periodicity of sequences attached to non-crystallographic root systems, Exp. Math. 27 (2018), no. 3, 265–271. MR 3857662, DOI 10.1080/10586458.2016.1255861
- M. Lanini and K. Zainoulline, Twisted quadratic foldings of root systems, Algebra i Analiz 33 (2021), no. 1, 93–118; English transl., St. Petersburg Math. J. 33 (2022), no. 1, 65–84. MR 4219506, DOI 10.1090/spmj/1690
- George Lusztig, Some examples of square integrable representations of semisimple $p$-adic groups, Trans. Amer. Math. Soc. 277 (1983), no. 2, 623–653. MR 694380, DOI 10.1090/S0002-9947-1983-0694380-4
- R. V. Moody and J. Patera, Quasicrystals and icosians, J. Phys. A 26 (1993), no. 12, 2829–2853. MR 1236147, DOI 10.1088/0305-4470/26/12/022
- B. Mühlherr, Coxeter groups in Coxeter groups, Finite geometry and combinatorics (Deinze, 1992) London Math. Soc. Lecture Note Ser., vol. 191, Cambridge Univ. Press, Cambridge, 1993, pp. 277–287. MR 1256283, DOI 10.1017/CBO9780511526336.027
- Tomoki Nakanishi and Andrei Zelevinsky, On tropical dualities in cluster algebras, Algebraic groups and quantum groups, Contemp. Math., vol. 565, Amer. Math. Soc., Providence, RI, 2012, pp. 217–226. MR 2932428, DOI 10.1090/conm/565/11159
- Pierre-Guy Plamondon, Cluster algebras via cluster categories with infinite-dimensional morphism spaces, Compos. Math. 147 (2011), no. 6, 1921–1954. MR 2862067, DOI 10.1112/S0010437X11005483
- Nathan Reading, Universal geometric cluster algebras, Math. Z. 277 (2014), no. 1-2, 499–547. MR 3205782, DOI 10.1007/s00209-013-1264-4
- O. P. Shcherbak, Wave fronts and reflection groups, Uspekhi Mat. Nauk 43 (1988), no. 3(261), 125–160, 271, 272 (Russian, with English summary); English transl., Russian Math. Surveys 43 (1988), no. 3, 149–194. MR 955776, DOI 10.1070/RM1988v043n03ABEH001741
- David Speyer and Hugh Thomas, Acyclic cluster algebras revisited, Algebras, quivers and representations, Abel Symp., vol. 8, Springer, Heidelberg, 2013, pp. 275–298. MR 3183889, DOI 10.1007/978-3-642-39485-0_{1}2
- Toshiyuki Tanisaki, Foldings of root systems and Gabriel’s theorem, Tsukuba J. Math. 4 (1980), no. 1, 89–97. MR 597686, DOI 10.21099/tkbjm/1496158795
Bibliographic Information
- Drew Damien Duffield
- Affiliation: Department of Mathematical Sciences, Durham University, Mathematical Sciences & Computer Science Building, Upper Mountjoy Campus, Stockton Road, Durham, DH1 3LE, United Kingdom
- MR Author ID: 1273138
- ORCID: 0000-0002-1476-8147
- Email: ddduffield2@gmail.com
- Pavel Tumarkin
- Affiliation: Department of Mathematical Sciences, Durham University, Mathematical Sciences & Computer Science Building, Upper Mountjoy Campus, Stockton Road, Durham, DH1 3LE, United Kingdom
- MR Author ID: 731104
- Email: pavel.tumarkin@durham.ac.uk
- Received by editor(s): November 7, 2022
- Received by editor(s) in revised form: February 8, 2024, and July 9, 2024
- Published electronically: August 29, 2024
- Additional Notes: Research was supported by the Leverhulme Trust research grant RPG-2019-153.
This work was supported by EPSRC grant no EP/R014604/1. - © Copyright 2024 by the authors
- Journal: Represent. Theory 28 (2024), 275-327
- MSC (2020): Primary 13F60; Secondary 16G70, 16G20
- DOI: https://doi.org/10.1090/ert/671