Arithmetic branching law and generic $L$-packets
HTML articles powered by AMS MathViewer
- by Cheng Chen, Dihua Jiang, Dongwen Liu and Lei Zhang;
- Represent. Theory 28 (2024), 328-365
- DOI: https://doi.org/10.1090/ert/672
- Published electronically: September 3, 2024
- HTML | PDF | Request permission
Abstract:
Let $G$ be a classical group defined over a local field $F$ of characteristic zero. For any irreducible admissible representation $\pi$ of $G(F)$, which is of Casselman-Wallach type if $F$ is archimedean, we extend the study of spectral decomposition of local descents by Jiang and Zhang [Algebra Number Theory 12 (2018), 1489–1535] for special orthogonal groups over non-archimedean local fields to more general classical groups over any local field $F$. In particular, if $\pi$ has a generic local $L$-parameter, we introduce the spectral first occurrence index ${\mathfrak {f}}_{\mathfrak {s}}(\pi )$ and the arithmetic first occurrence index ${\mathfrak {f}}_{{\mathfrak {a}}}(\pi )$ of $\pi$ and prove in this paper that ${\mathfrak {f}}_{\mathfrak {s}}(\pi )={\mathfrak {f}}_{{\mathfrak {a}}}(\pi )$. Based on the theory of consecutive descents of enhanced $L$-parameters developed by Jiang, Liu, and Zhang [Arithmetic wavefront sets and generic $L$-packets, arXiv:2207.04700], we are able to show in this paper that the first descent spectrum consists of all discrete series representations, which determines explicitly the branching decomposition problem by means of the relevant arithmetic data and extends the main result (Jiang and Zhang [Algebra Number Theory 12 (2018), 1489–1535], Theorem 1.7) to broader generality.References
- Jeffrey Adams and Dan Barbasch, Genuine representations of the metaplectic group, Compositio Math. 113 (1998), no. 1, 23–66. MR 1638210, DOI 10.1023/A:1000450504919
- Avraham Aizenbud, Dmitry Gourevitch, Stephen Rallis, and Gérard Schiffmann, Multiplicity one theorems, Ann. of Math. (2) 172 (2010), no. 2, 1407–1434. MR 2680495, DOI 10.4007/annals.2010.172.1413
- James Arthur, The endoscopic classification of representations, American Mathematical Society Colloquium Publications, vol. 61, American Mathematical Society, Providence, RI, 2013. Orthogonal and symplectic groups. MR 3135650, DOI 10.1090/coll/061
- Hiraku Atobe, On the uniqueness of generic representations in an $L$-packet, Int. Math. Res. Not. IMRN 23 (2017), 7051–7068. MR 3801418, DOI 10.1093/imrn/rnw220
- Hiraku Atobe, The local theta correspondence and the local Gan-Gross-Prasad conjecture for the symplectic-metaplectic case, Math. Ann. 371 (2018), no. 1-2, 225–295. MR 3788848, DOI 10.1007/s00208-017-1620-5
- Hiraku Atobe and Wee Teck Gan, On the local Langlands correspondence and Arthur conjecture for even orthogonal groups, Represent. Theory 21 (2017), 354–415. MR 3708200, DOI 10.1090/ert/504
- Joseph Bernstein and Bernhard Krötz, Smooth Fréchet globalizations of Harish-Chandra modules, Israel J. Math. 199 (2014), no. 1, 45–111. MR 3219530, DOI 10.1007/s11856-013-0056-1
- I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, 441–472. MR 579172, DOI 10.24033/asens.1333
- Raphaël Beuzart-Plessis, La conjecture locale de Gross-Prasad pour les représentations tempérées des groupes unitaires, Mém. Soc. Math. Fr. (N.S.) 149 (2016), vii+191 (French, with English and French summaries). MR 3676153, DOI 10.24033/msmf.457
- Raphaël Beuzart-Plessis, A local trace formula for the Gan-Gross-Prasad conjecture for unitary groups: the Archimedean case, Astérisque 418 (2020), ix+305 (English, with English and French summaries). MR 4146145, DOI 10.24033/ast
- W. Casselman, Canonical extensions of Harish-Chandra modules to representations of $G$, Canad. J. Math. 41 (1989), no. 3, 385–438. MR 1013462, DOI 10.4153/CJM-1989-019-5
- C. Chen, The Local Gan-Gross-Prasad Conjecture for Special Orthogonal Groups over Archimedean Local Fields, arXiv:2102.11404, 2021.
- C. Chen, Multiplicity formula for induced representations: Bessel and Fourier-Jacobi models over Archimedean local fields, arXiv:2308.02912, 2023.
- C. Chen, A uniform approach towards the local Gan-Gross-Prasad conjecture, Thesis (Ph.D)–University of Minnesota, 2024.
- C. Chen and Z. Luo, The local Gross-Prasad conjecture over $\mathbb {R}$: Epsilon dichotomy, arXiv:2204.01212, 2022.
- Wee Teck Gan, Benedict H. Gross, and Dipendra Prasad, Symplectic local root numbers, central critical $L$ values, and restriction problems in the representation theory of classical groups, Astérisque 346 (2012), 1–109 (English, with English and French summaries). Sur les conjectures de Gross et Prasad. I. MR 3202556
- Wee Teck Gan, Benedict H. Gross, and Dipendra Prasad, Branching laws for classical groups: the non-tempered case, Compos. Math. 156 (2020), no. 11, 2298–2367. MR 4190046, DOI 10.1112/S0010437X20007496
- Wee Teck Gan and Atsushi Ichino, On endoscopy and the refined Gross-Prasad conjecture for $(\rm SO_5,SO_4)$, J. Inst. Math. Jussieu 10 (2011), no. 2, 235–324. MR 2787690, DOI 10.1017/S1474748010000198
- Wee Teck Gan and Atsushi Ichino, The Gross-Prasad conjecture and local theta correspondence, Invent. Math. 206 (2016), no. 3, 705–799. MR 3573972, DOI 10.1007/s00222-016-0662-8
- W. T. Gan, S. Kudla, and S. Takeda. The Local Theta Correspondence, https://sites.google.com/view/grothendieck-jr/theta-book, 2024.
- Wee Teck Gan and Gordan Savin, Representations of metaplectic groups I: epsilon dichotomy and local Langlands correspondence, Compos. Math. 148 (2012), no. 6, 1655–1694. MR 2999299, DOI 10.1112/S0010437X12000486
- David Ginzburg, Stephen Rallis, and David Soudry, The descent map from automorphic representations of $\textrm {GL}(n)$ to classical groups, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011. MR 2848523, DOI 10.1142/9789814304993
- Raul Gomez and Chen-Bo Zhu, Local theta lifting of generalized Whittaker models associated to nilpotent orbits, Geom. Funct. Anal. 24 (2014), no. 3, 796–853. MR 3213830, DOI 10.1007/s00039-014-0276-5
- Hongyu He, On the Gan-Gross-Prasad conjecture for $U(p,q)$, Invent. Math. 209 (2017), no. 3, 837–884. MR 3681395, DOI 10.1007/s00222-017-0720-x
- D. Jiang, D. Liu, and L. Zhang, Arithmetic wavefront sets and generic $L$-packets, arXiv:2207.04700, 2022.
- Dihua Jiang and Lei Zhang, Local root numbers and spectrum of the local descents for orthogonal groups: $p$-adic case, Algebra Number Theory 12 (2018), no. 6, 1489–1535. MR 3864205, DOI 10.2140/ant.2018.12.1489
- Dihua Jiang and Lei Zhang, Arthur parameters and cuspidal automorphic modules of classical groups, Ann. of Math. (2) 191 (2020), no. 3, 739–827. MR 4088351, DOI 10.4007/annals.2020.191.3.2
- T. Kaletha, A. Minguez, S. W. Shin, and P.-J. White, Endoscopic classification of representations: inner forms of unitary groups, arXiv:1409.3731, 2014.
- Toshiyuki Kobayashi, Recent developments in branching problems of representation theory, Sūgaku 71 (2019), no. 4, 388–416 (Japanese). MR 3970547
- Toshiyuki Kobayashi and Birgit Speh, Symmetry breaking for representations of rank one orthogonal groups, Mem. Amer. Math. Soc. 238 (2015), no. 1126, v+110. MR 3400768, DOI 10.1090/memo/1126
- Toshiyuki Kobayashi and Birgit Speh, Symmetry breaking for representations of rank one orthogonal groups II, Lecture Notes in Mathematics, vol. 2234, Springer, Singapore, 2018. MR 3839339, DOI 10.1007/978-981-13-2901-2
- Wen-Wei Li, La formule des traces pour les revêtements de groupes réductifs connexes. II. Analyse harmonique locale, Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), no. 5, 787–859 (2013) (French, with English and French summaries). MR 3053009, DOI 10.24033/asens.2178
- Yifeng Liu and Binyong Sun, Uniqueness of Fourier-Jacobi models: the Archimedean case, J. Funct. Anal. 265 (2013), no. 12, 3325–3344. MR 3110504, DOI 10.1016/j.jfa.2013.08.034
- Zhilin Luo, A Local Trace Formula for the Local Gross-Prasad Conjecture for Special Orthogonal Groups, ProQuest LLC, Ann Arbor, MI, 2021. Thesis (Ph.D.)–University of Minnesota. MR 4351918
- I. G. Macdonald, Spherical functions on a group of $p$-adic type, Publications of the Ramanujan Institute, No. 2, University of Madras, Centre for Advanced Study in Mathematics, Ramanujan Institute, Madras, 1971. MR 435301
- Colette Mœglin and Jean-Loup Waldspurger, La conjecture locale de Gross-Prasad pour les groupes spéciaux orthogonaux: le cas général, Astérisque 347 (2012), 167–216 (French). Sur les conjectures de Gross et Prasad. II. MR 3155346
- Chung Pang Mok, Endoscopic classification of representations of quasi-split unitary groups, Mem. Amer. Math. Soc. 235 (2015), no. 1108, vi+248. MR 3338302, DOI 10.1090/memo/1108
- Binyong Sun, Multiplicity one theorems for Fourier-Jacobi models, Amer. J. Math. 134 (2012), no. 6, 1655–1678. MR 2999291, DOI 10.1353/ajm.2012.0044
- David A. Vogan Jr., The local Langlands conjecture, Representation theory of groups and algebras, Contemp. Math., vol. 145, Amer. Math. Soc., Providence, RI, 1993, pp. 305–379. MR 1216197, DOI 10.1090/conm/145/1216197
- J.-L. Waldspurger, La formule de Plancherel pour les groupes $p$-adiques (d’après Harish-Chandra), J. Inst. Math. Jussieu 2 (2003), no. 2, 235–333 (French, with French summary). MR 1989693, DOI 10.1017/S1474748003000082
- J.-L. Waldspurger, Une formule intégrale reliée à la conjecture locale de Gross-Prasad, Compos. Math. 146 (2010), no. 5, 1180–1290 (French, with English summary). MR 2684300, DOI 10.1112/S0010437X10004744
- Jean-Loup Waldspurger, Une formule intégrale reliée à la conjecture locale de Gross-Prasad, 2e partie: extension aux représentations tempérées, Astérisque 346 (2012), 171–312 (French, with English and French summaries). Sur les conjectures de Gross et Prasad. I. MR 3202558
- Jean-Loup Waldspurger, La conjecture locale de Gross-Prasad pour les représentations tempérées des groupes spéciaux orthogonaux, Astérisque 347 (2012), 103–165 (French). Sur les conjectures de Gross et Prasad. II. MR 3155345
- Nolan R. Wallach, Real reductive groups. II, Pure and Applied Mathematics, vol. 132, Academic Press, Inc., Boston, MA, 1992. MR 1170566
- Hang Xue, Bessel models for real unitary groups: the tempered case, Duke Math. J. 172 (2023), no. 5, 995–1031. MR 4568696, DOI 10.1215/00127094-2022-0018
- H. Xue, Bessel models for unitary groups and Schwartz homology, https://www.math.arizona.edu/~xuehang/lggp_generic_v1.pdf, Preprint, 2020.
- H. Xue, Fourier-Jacobi models for real unitary groups, https://www.math.arizona.edu/~xuehang/local_FJ_u.pdf, Preprint, 2022.
Bibliographic Information
- Cheng Chen
- Affiliation: School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
- Email: chen5968@umn.edu
- Dihua Jiang
- Affiliation: School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
- MR Author ID: 260974
- ORCID: 0000-0003-4039-0683
- Email: dhjiang@math.umn.edu
- Dongwen Liu
- Affiliation: School of Mathematical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, People’s Republic of China
- MR Author ID: 913163
- Email: maliu@zju.edu.cn
- Lei Zhang
- Affiliation: Department of Mathematics, National University of Singapore, Singapore 119076
- ORCID: 0000-0002-5370-3282
- Email: matzhlei@nus.edu.sg
- Received by editor(s): September 21, 2023
- Received by editor(s) in revised form: June 17, 2024, and July 10, 2024
- Published electronically: September 3, 2024
- Additional Notes: The research of the first and second authors was supported in part by the NSF Grant DMS–2200890. The research of the third author was supported in part by National Key R&D Program of China No. 2022YFA1005300 and National Natural Science Foundation of China No. 12171421. The research of the fourth author was supported by AcRF Tier 1 grants A-0004274-00-00 and A-0004279-00-00 of the National University of Singapore.
- © Copyright 2024 American Mathematical Society
- Journal: Represent. Theory 28 (2024), 328-365
- MSC (2020): Primary 11F70, 22E50; Secondary 11S25, 20G25
- DOI: https://doi.org/10.1090/ert/672