Generalized Poincaré series for SU(2,1)
HTML articles powered by AMS MathViewer
- by Roelof W. Bruggeman and Roberto J. Miatello;
- Represent. Theory 28 (2024), 381-433
- DOI: https://doi.org/10.1090/ert/674
- Published electronically: September 17, 2024
- HTML | PDF | Request permission
Abstract:
We introduce and study ‘non-abelian’ Poincaré series for the group $G=\operatorname {SU}(2,1)$, that is, Poincaré series attached to a Stone-Von Neumann representation of the unipotent subgroup $N$ of $G$. Such Poincaré series have in general exponential growth. In this study we use results on abelian and non-abelian Fourier term modules obtained by Bruggeman and Miatello [Representations of $\mathrm {SU}(2,1)$ in Fourier term modules, Springer, Cham, 2023] to compute the inner product of truncations of these series with square integrable automorphic forms, in connection with their Fourier expansions. As a consequence, we obtain general completeness results for $\operatorname {SU}(2,1)$ that, in particular, generalize those valid for the classical holomorphic (and antiholomorphic) Poincaré series for $\operatorname {SL}(2,\mathbb {R})$.References
- Jan Hendrik Bruinier and Jens Funke, On two geometric theta lifts, Duke Math. J. 125 (2004), no. 1, 45–90. MR 2097357, DOI 10.1215/S0012-7094-04-12513-8
- Roelof W. Bruggeman and Roberto J. Miatello, Representations of $\textrm {SU(2,1)}$ in Fourier term modules, Lecture Notes in Mathematics, vol. 2340, Springer, Cham, [2023] ©2023. MR 4696830, DOI 10.1007/978-3-031-43192-0
- Stephen Gelbart and Ilya Piatetski-Shapiro, Automorphic forms and $L$-functions for the unitary group, Lie group representations, II (College Park, Md., 1982/1983) Lecture Notes in Math., vol. 1041, Springer, Berlin, 1984, pp. 141–184. MR 748507, DOI 10.1007/BFb0073147
- F. A. Grünbaum, I. Pacharoni, and J. Tirao, Matrix valued spherical functions associated to the complex projective plane, J. Funct. Anal. 188 (2002), no. 2, 350–441. MR 1883412, DOI 10.1006/jfan.2001.3840
- Harish-Chandra, Automorphic forms on semisimple Lie groups, Lecture Notes in Mathematics, No. 62, Springer-Verlag, Berlin-New York, 1968. Notes by J. G. M. Mars. MR 232893
- Yoshi-hiro Ishikawa, The generalized Whittaker functions for $\textrm {SU}(2,1)$ and the Fourier expansion of automorphic forms, J. Math. Sci. Univ. Tokyo 6 (1999), no. 3, 477–526. MR 1726680
- Harutaka Koseki and Takayuki Oda, Whittaker functions for the large discrete series representations of $\textrm {SU}(2,1)$ and related zeta integrals, Publ. Res. Inst. Math. Sci. 31 (1995), no. 6, 959–999. MR 1382562, DOI 10.2977/prims/1195163592
- R. Miatello and N. R. Wallach, Automorphic forms constructed from Whittaker vectors, J. Funct. Anal. 86 (1989), no. 2, 411–487. MR 1021143, DOI 10.1016/0022-1236(89)90059-1
- H. Neunhöffer, Über die analytische Fortsetzung von Poincaréreihen, S.-B. Heidelberger Akad. Wiss. Math.-Natur. Kl. (1973), 33–90 (German). MR 352007
- Douglas Niebur, A class of nonanalytic automorphic functions, Nagoya Math. J. 52 (1973), 133–145. MR 337788
- Hans Petersson, Über die Entwicklungskoeffizienten der automorphen Formen, Acta Math. 58 (1932), no. 1, 169–215 (German). MR 1555346, DOI 10.1007/BF02547776
- H. Poincare, Mémoire sur les fonctions fuchsiennes, Acta Math. 1 (1882), no. 1, 193–294 (French). MR 1554584, DOI 10.1007/BF02391845
- L. J. Slater, Confluent hypergeometric functions, Cambridge University Press, New York, 1960. MR 107026
- David A. Vogan Jr. and Gregg J. Zuckerman, Unitary representations with nonzero cohomology, Compositio Math. 53 (1984), no. 1, 51–90. MR 762307
- G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge; The Macmillan Company, New York, 1944. MR 10746
- Don Zagier, Ramanujan’s mock theta functions and their applications (after Zwegers and Ono-Bringmann), Astérisque 326 (2009), Exp. No. 986, vii–viii, 143–164 (2010). Séminaire Bourbaki. Vol. 2007/2008. MR 2605321
Bibliographic Information
- Roelof W. Bruggeman
- Affiliation: Mathematisch Instituut, Universiteit Utrecht, Postbus 80010, 3508 TA Utrecht, Nederland
- MR Author ID: 42390
- ORCID: 0000-0002-6804-6211
- Email: r.w.bruggeman@uu.nl
- Roberto J. Miatello
- Affiliation: FAMAF-CIEM, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- MR Author ID: 124160
- Email: miatello@famaf.unc.edu.ar
- Published electronically: September 17, 2024
- © Copyright 2024 American Mathematical Society
- Journal: Represent. Theory 28 (2024), 381-433
- MSC (2020): Primary 11F70; Secondary 11F55, 22E30
- DOI: https://doi.org/10.1090/ert/674
- MathSciNet review: 4799481