Associated varieties of minimal highest weight modules
HTML articles powered by AMS MathViewer
- by Zhanqiang Bai, Jia-Jun Ma, Wei Xiao and Xun Xie;
- Represent. Theory 28 (2024), 498-513
- DOI: https://doi.org/10.1090/ert/681
- Published electronically: November 12, 2024
- HTML | PDF | Request permission
Abstract:
Let $\mathfrak {g}$ be a complex simple Lie algebra. A simple $\mathfrak {g}$-module is called minimal if the associated variety of its annihilator ideal coincides with the closure of the minimal nilpotent coadjoint orbit. The main result of this paper is a classification of minimal highest weight modules for $\mathfrak {g}$. This classification extends the work of Joseph [Ann. Sci. École Norm. Sup. (4) 31 (1998), 17–45], which focused on categorizing minimal highest weight modules annihilated by completely prime ideals. Furthermore, we have determined the associated varieties of these modules. In other words, we have identified all possible weak quantizations of minimal orbital varieties.References
- Jeffrey Adams and David A. Vogan Jr., Associated varieties for real reductive groups, Pure Appl. Math. Q. 17 (2021), no. 4, 1191–1267. MR 4359259, DOI 10.4310/PAMQ.2021.v17.n4.a2
- W. Borho and J.-L. Brylinski, Differential operators on homogeneous spaces. III. Characteristic varieties of Harish-Chandra modules and of primitive ideals, Invent. Math. 80 (1985), no. 1, 1–68. MR 784528, DOI 10.1007/BF01388547
- Georgia Benkart, Daniel Britten, and Frank Lemire, Modules with bounded weight multiplicities for simple Lie algebras, Math. Z. 225 (1997), no. 2, 333–353. MR 1464935, DOI 10.1007/PL00004314
- I. N. Bernšteĭn, Modules over a ring of differential operators. An investigation of the fundamental solutions of equations with constant coefficients, Funkcional. Anal. i Priložen. 5 (1971), no. 2, 1–16 (Russian). MR 290097
- J. N. Bernstein and S. I. Gel′fand, Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras, Compositio Math. 41 (1980), no. 2, 245–285. MR 581584
- ZhanQiang Bai and Markus Hunziker, The Gelfand-Kirillov dimension of a unitary highest weight module, Sci. China Math. 58 (2015), no. 12, 2489–2498. MR 3429262, DOI 10.1007/s11425-014-4968-y
- Dan Barbasch and David Vogan, Primitive ideals and orbital integrals in complex exceptional groups, J. Algebra 80 (1983), no. 2, 350–382. MR 691809, DOI 10.1016/0021-8693(83)90006-6
- Dan Barbasch and David A. Vogan Jr., Unipotent representations of complex semisimple groups, Ann. of Math. (2) 121 (1985), no. 1, 41–110. MR 782556, DOI 10.2307/1971193
- Zhanqiang Bai and Xun Xie, Gelfand-Kirillov dimensions of highest weight Harish-Chandra modules for $SU(p,q)$, Int. Math. Res. Not. IMRN 14 (2019), 4392–4418. MR 3984073, DOI 10.1093/imrn/rnx247
- Zhanqiang Bai, Wei Xiao, and Xun Xie, Gelfand-Kirillov dimensions and associated varieties of highest weight modules, Int. Math. Res. Not. IMRN 10 (2023), 8101–8142. MR 4589071, DOI 10.1093/imrn/rnac081
- David H. Collingwood and William M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR 1251060
- Devra Garfinkle, The annihilators of irreducible Harish-Chandra modules for $\textrm {SU}(p,q)$ and other type $A_{n-1}$ groups, Amer. J. Math. 115 (1993), no. 2, 305–369. MR 1216434, DOI 10.2307/2374861
- Wee Teck Gan and Gordan Savin, On minimal representations definitions and properties, Represent. Theory 9 (2005), 46–93. MR 2123125, DOI 10.1090/S1088-4165-05-00191-3
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 463157, DOI 10.1007/978-1-4757-3849-0
- Joachim Hilgert, Toshiyuki Kobayashi, and Jan Möllers, Minimal representations via Bessel operators, J. Math. Soc. Japan 66 (2014), no. 2, 349–414. MR 3201818, DOI 10.2969/jmsj/06620349
- Jing-Song Huang, Lectures on representation theory, World Scientific Publishing Co., Inc., River Edge, NJ, 1999. MR 1735324, DOI 10.1142/9789812815743
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York-Berlin, 1978. Second printing, revised. MR 499562
- James E. Humphreys, Representations of semisimple Lie algebras in the BGG category $\scr {O}$, Graduate Studies in Mathematics, vol. 94, American Mathematical Society, Providence, RI, 2008. MR 2428237, DOI 10.1090/gsm/094
- James E. Humphreys, Notes on the minimal special nilpotent orbit, Available at http://people.math.umass.edu/jeh/pub/minimal.pdf (2016).
- A. Joseph, Gel′fand-Kirillov dimension for the annihilators of simple quotients of Verma modules, J. London Math. Soc. (2) 18 (1978), no. 1, 50–60. MR 506500, DOI 10.1112/jlms/s2-18.1.50
- Anthony Joseph, On the variety of a highest weight module, J. Algebra 88 (1984), no. 1, 238–278. MR 741942, DOI 10.1016/0021-8693(84)90100-5
- Anthony Joseph, On the associated variety of a primitive ideal, J. Algebra 93 (1985), no. 2, 509–523. MR 786766, DOI 10.1016/0021-8693(85)90172-3
- Anthony Joseph, Orbital varietes of the minimal orbit, Ann. Sci. École Norm. Sup. (4) 31 (1998), no. 1, 17–45 (English, with English and French summaries). MR 1604290, DOI 10.1016/S0012-9593(98)80017-7
- Richard Kane, Reflection groups and invariant theory, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 5, Springer-Verlag, New York, 2001. MR 1838580, DOI 10.1007/978-1-4757-3542-0
- David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI 10.1007/BF01390031
- Jian-Shu Li, Minimal representations & reductive dual pairs, Representation theory of Lie groups (Park City, UT, 1998) IAS/Park City Math. Ser., vol. 8, Amer. Math. Soc., Providence, RI, 2000, pp. 293–340. MR 1737731
- G. Lusztig, Green polynomials and singularities of unipotent classes, Adv. in Math. 42 (1981), no. 2, 169–178. MR 641425, DOI 10.1016/0001-8708(81)90038-4
- George Lusztig, Some examples of square integrable representations of semisimple $p$-adic groups, Trans. Amer. Math. Soc. 277 (1983), no. 2, 623–653. MR 694380, DOI 10.1090/S0002-9947-1983-0694380-4
- George Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472, DOI 10.1515/9781400881772
- G. Lusztig, Hecke algebras with unequal parameters, CRM Monograph Series, vol. 18, American Mathematical Society, Providence, RI, 2003. MR 1974442, DOI 10.1090/crmm/018
- Olivier Mathieu, Classification of irreducible weight modules, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 2, 537–592 (English, with English and French summaries). MR 1775361, DOI 10.5802/aif.1765
- William M. McGovern, A triangularity result for associated varieties of highest weight modules, Comm. Algebra 28 (2000), no. 4, 1835–1843. MR 1747355, DOI 10.1080/00927870008826928
- Anna Melnikov, Irreducibility of the associated varieties of simple highest weight modules in ${\mathfrak {s}}{\mathfrak {l}}(n)$, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), no. 1, 53–57 (English, with English and French summaries). MR 1198749
- Guowu Meng, Euclidean Jordan algebras, hidden actions, and J-Kepler problems, J. Math. Phys. 52 (2011), no. 11, 112104, 35. MR 2906555, DOI 10.1063/1.3659283
- Kyo Nishiyama, Hiroyuki Ochiai, and Kenji Taniguchi, Bernstein degree and associated cycles of Harish-Chandra modules—Hermitian symmetric case, Astérisque 273 (2001), 13–80 (English, with English and French summaries). Nilpotent orbits, associated cycles and Whittaker models for highest weight representations. MR 1845714
- Binyong Sun, Lowest weight modules of $\widetilde {\textrm {Sp}_{2n}(\Bbb R)}$ of minimal Gelfand-Kirillov dimension, J. Algebra 319 (2008), no. 7, 3062–3074. MR 2397423, DOI 10.1016/j.jalgebra.2007.05.022
- Hiroyoshi Tamori, Classification of irreducible $(\mathfrak {g},\mathfrak {k})$-modules associated to the ideals of minimal nilpotent orbits for simple Lie groups of type $A$, Int. Math. Res. Not. IMRN 5 (2023), 3814–3847. MR 4565656, DOI 10.1093/imrn/rnab356
- Toshiyuki Tanisaki, Characteristic varieties of highest weight modules and primitive quotients, Representations of Lie groups, Kyoto, Hiroshima, 1986, Adv. Stud. Pure Math., vol. 14, Academic Press, Boston, MA, 1988, pp. 1–30. MR 1039834, DOI 10.2969/aspm/01410001
- David A. Vogan Jr., Gel′fand-Kirillov dimension for Harish-Chandra modules, Invent. Math. 48 (1978), no. 1, 75–98. MR 506503, DOI 10.1007/BF01390063
- David A. Vogan Jr., Singular unitary representations, Noncommutative harmonic analysis and Lie groups (Marseille, 1980) Lecture Notes in Math., vol. 880, Springer, Berlin, 1981, pp. 506–535. MR 644845
- David A. Vogan Jr., Associated varieties and unipotent representations, Harmonic analysis on reductive groups (Brunswick, ME, 1989) Progr. Math., vol. 101, Birkhäuser Boston, Boston, MA, 1991, pp. 315–388. MR 1168491
- Weiqiang Wang, Dimension of a minimal nilpotent orbit, Proc. Amer. Math. Soc. 127 (1999), no. 3, 935–936. MR 1610801, DOI 10.1090/S0002-9939-99-04946-1
- Geordie Williamson, A reducible characteristic variety in type $A$, Representations of reductive groups, Progr. Math., vol. 312, Birkhäuser/Springer, Cham, 2015, pp. 517–532. MR 3496286, DOI 10.1007/978-3-319-23443-4_{1}9
- Wei Xiao and Ailin Zhang, Jantzen coefficients and simplicity of parabolic Verma modules, J. Algebra 611 (2022), 24–64. MR 4472423, DOI 10.1016/j.jalgebra.2022.07.010
Bibliographic Information
- Zhanqiang Bai
- Affiliation: School of Mathematical Sciences, Soochow University, Suzhou 215006, People’s Republic of China
- MR Author ID: 1032227
- ORCID: 0000-0002-3986-5218
- Email: zqbai@suda.edu.cn
- Jia-Jun Ma
- Affiliation: Department of Mathematics, School of Mathematical Sciences, Xiamen University, Xiamen 361005, People’s Republic China
- MR Author ID: 1082964
- ORCID: 0000-0002-1045-639X
- Email: hoxide@gmail.com
- Wei Xiao
- Affiliation: School of Mathematical Sciences, Shenzhen Key Laboratory of Advanced Machine Learning and Applications, Shenzhen University, Shenzhen 518060, Guangdong, People’s Republic of China
- ORCID: 0000-0001-9874-9375
- Email: xiaow@szu.edu.cn
- Xun Xie
- Affiliation: School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
- MR Author ID: 1196382
- Email: xieg7@163.com
- Received by editor(s): March 20, 2024
- Received by editor(s) in revised form: June 7, 2024, and September 18, 2024
- Published electronically: November 12, 2024
- Additional Notes: The first author was supported in part by NSFC Grant No. 12171344 and the National Key $\mathrm {R}\&\mathrm {D}$ Program of China (No. 2018YFA0701700 and No. 2018YFA0701701). The second author was supported in part by NSFC Grant No. 11701364 and No. 11971305, the Fundamental Research Funds for the Central Universities (Grant No. 20720230022) and Xiamen University Malaysia Research Fund (Grant No. XMUMRF/2022-C9/IMAT/0019). The third author was supported in part by NSFC Grant No. 11701381 and No. 12371031. The fourth author was supported in part by NSFC Grant No. 12171030 and No. 12431002.
The third author is the corresponding author - © Copyright 2024 American Mathematical Society
- Journal: Represent. Theory 28 (2024), 498-513
- MSC (2020): Primary 22E47; Secondary 17B08
- DOI: https://doi.org/10.1090/ert/681
- MathSciNet review: 4822987