Sharpness versus bluntness in affine Weyl groups
HTML articles powered by AMS MathViewer
- by G. Lusztig;
- Represent. Theory 28 (2024), 514-532
- DOI: https://doi.org/10.1090/ert/678
- Published electronically: November 14, 2024
- HTML | PDF | Request permission
Abstract:
In this paper we give an explanation of the bijection between arithmetic and geometric diagrams attached to supercuspidal unipotent representations of a simple p-adic group which is based purely on algebra.References
- Jean de Siebenthal, Sur les groupes de Lie compacts non connexes, Comment. Math. Helv. 31 (1956), 41–89 (French). MR 94408, DOI 10.1007/BF02564352
- V. G. Kac, Automorphisms of finite order of semisimple Lie algebras, Funkcional. Anal. i Priložen. 3 (1969), no. 3, 94–96 (Russian). MR 251091
- Victor G. Kac, Infinite-dimensional Lie algebras, Progress in Mathematics, vol. 44, Birkhäuser Boston, Inc., Boston, MA, 1983. An introduction. MR 739850, DOI 10.1007/978-1-4757-1382-4
- David Kazhdan and George Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), no. 1, 153–215. MR 862716, DOI 10.1007/BF01389157
- G. Lusztig and N. Spaltenstein, Induced unipotent classes, J. London Math. Soc. (2) 19 (1979), no. 1, 41–52. MR 527733, DOI 10.1112/jlms/s2-19.1.41
- George Lusztig, Some examples of square integrable representations of semisimple $p$-adic groups, Trans. Amer. Math. Soc. 277 (1983), no. 2, 623–653. MR 694380, DOI 10.1090/S0002-9947-1983-0694380-4
- George Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 742472, DOI 10.1515/9781400881772
- G. Lusztig, Intersection cohomology complexes on a reductive group, Invent. Math. 75 (1984), no. 2, 205–272. MR 732546, DOI 10.1007/BF01388564
- George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1227098
- George Lusztig, Classification of unipotent representations of simple $p$-adic groups, Internat. Math. Res. Notices 11 (1995), 517–589. MR 1369407, DOI 10.1155/S1073792895000353
- G. Lusztig, Classification of unipotent representations of simple $p$-adic groups. II, Represent. Theory 6 (2002), 243–289. MR 1927955, DOI 10.1090/S1088-4165-02-00173-5
- G. Lusztig, Hecke algebras with unequal parameters, CRM Monograph Series, vol. 18, American Mathematical Society, Providence, RI, 2003. MR 1974442, DOI 10.1090/crmm/018
- G. Lusztig, Unipotent blocks and weighted affine Weyl groups, Categorical, combinatorial and geometric representation theory and related topics, Proc. Sympos. Pure Math., vol. 108, Amer. Math. Soc., Providence, RI, [2024] ©2024, pp. 435–451. MR 4759979
Bibliographic Information
- G. Lusztig
- Affiliation: Department of Mathematics, M.I.T., Cambridge, Massachussetts 02139
- MR Author ID: 117100
- Received by editor(s): November 5, 2023
- Received by editor(s) in revised form: September 10, 2024, and September 16, 2024
- Published electronically: November 14, 2024
- Additional Notes: This work was supported by NSF grant DMS-2153741
- © Copyright 2024 American Mathematical Society
- Journal: Represent. Theory 28 (2024), 514-532
- MSC (2020): Primary 20G99
- DOI: https://doi.org/10.1090/ert/678