The product of simple modules over KLR algebras and quiver Grassmannians
HTML articles powered by AMS MathViewer
- by Yingjin Bi;
- Represent. Theory 28 (2024), 552-592
- DOI: https://doi.org/10.1090/ert/680
- Published electronically: December 5, 2024
- PDF | Request permission
Abstract:
In this paper, we study the product of two simple modules over Khovanov-Lauda-Rouquier (KLR) algebras using the quiver Grassmannians for Dynkin quivers. More precisely, we establish a bridge between the Induction functor on the category of modules over KLR algebras and the irreducible components of quiver Grassmannians for Dynkin quivers via a sort of extension varieties, which is an analogue of the extension group in Hall algebras. As a result, we give a necessary condition when the product of two simple modules over a KLR algebra is simple using the set of irreducible components of quiver Grassmannians. In particular, in some special cases, we provide proof for the conjecture recently proposed by Lapid and Mínguez.References
- Klaus Bongartz, On degenerations and extensions of finite-dimensional modules, Adv. Math. 121 (1996), no. 2, 245–287. MR 1402728, DOI 10.1006/aima.1996.0053
- Jonathan Brundan, Quiver Hecke algebras and categorification, Advances in representation theory of algebras, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2013, pp. 103–133. MR 3220535
- Arkady Berenstein and Andrei Zelevinsky, String bases for quantum groups of type $A_r$, I. M. Gel′fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 51–89. MR 1237826
- B. Crawley-Boevey, Geometry of representations of algebras, Lecture Notes, William Crawley-Boevey, available at the author’s webpage, 1993.
- Giovanni Cerulli Irelli, Evgeny Feigin, and Markus Reineke, Quiver Grassmannians and degenerate flag varieties, Algebra Number Theory 6 (2012), no. 1, 165–194. MR 2950163, DOI 10.2140/ant.2012.6.165
- G. Cerulli Irelli, E. Feigin, and M. Reineke, Desingularization of quiver Grassmannians for Dynkin quivers, Adv. Math. 245 (2013), 182–207. MR 3084427, DOI 10.1016/j.aim.2013.05.024
- Giovanni Cerulli Irelli, Evgeny Feigin, and Markus Reineke, Homological approach to the Hernandez-Leclerc construction and quiver varieties, Represent. Theory 18 (2014), 1–14. MR 3149614, DOI 10.1090/S1088-4165-2014-00449-7
- Neil Chriss and Victor Ginzburg, Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 1997. MR 1433132
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 463157
- David Hernandez and Bernard Leclerc, Quantum Grothendieck rings and derived Hall algebras, J. Reine Angew. Math. 701 (2015), 77–126. MR 3331727, DOI 10.1515/crelle-2013-0020
- Andrew Hubery, Irreducible components of quiver Grassmannians, Trans. Amer. Math. Soc. 369 (2017), no. 2, 1395–1458. MR 3572278, DOI 10.1090/tran/6693
- Seok-Jin Kang, Masaki Kashiwara, Myungho Kim, and Se-jin Oh, Monoidal categorification of cluster algebras, J. Amer. Math. Soc. 31 (2018), no. 2, 349–426. MR 3758148, DOI 10.1090/jams/895
- Masaki Kashiwara and Se-jin Oh, $t$-quantized Cartan matrix and R-matrices for cuspidal modules over quiver Hecke algebras, Adv. Math. 441 (2024), Paper No. 109551, 82. MR 4708155, DOI 10.1016/j.aim.2024.109551
- Bernhard Keller and Sarah Scherotzke, Desingularizations of quiver Grassmannians via graded quiver varieties, Adv. Math. 256 (2014), 318–347. MR 3177295, DOI 10.1016/j.aim.2014.01.021
- Bernhard Keller and Sarah Scherotzke, Graded quiver varieties and derived categories, J. Reine Angew. Math. 713 (2016), 85–127. MR 3483626, DOI 10.1515/crelle-2013-0124
- Mikhail Khovanov and Aaron D. Lauda, A diagrammatic approach to categorification of quantum groups. I, Represent. Theory 13 (2009), 309–347. MR 2525917, DOI 10.1090/S1088-4165-09-00346-X
- Alexander Kleshchev and Arun Ram, Representations of Khovanov-Lauda-Rouquier algebras and combinatorics of Lyndon words, Math. Ann. 349 (2011), no. 4, 943–975. MR 2777040, DOI 10.1007/s00208-010-0543-1
- Erez Lapid and Alberto Mínguez, Conjectures and results about parabolic induction of representations of $\textrm {GL}_n(F)$, Invent. Math. 222 (2020), no. 3, 695–747. MR 4169050, DOI 10.1007/s00222-020-00982-7
- E. Lapid and A. Mínguez, A binary operation on irreducible components of Lusztig’s nilpotent varieties $II$: applications and conjectures for representations of $GL\_n$ over a non-archimedean local field, to appear in Pure Appl. Math. Q., (2022).
- B. Leclerc, Imaginary vectors in the dual canonical basis of $U_q(\mathfrak {n})$, Transform. Groups 8 (2003), no. 1, 95–104. MR 1959765, DOI 10.1007/BF03326301
- Bernard Leclerc and Pierre-Guy Plamondon, Nakajima varieties and repetitive algebras, Publ. Res. Inst. Math. Sci. 49 (2013), no. 3, 531–561. MR 3097015, DOI 10.4171/PRIMS/112
- G. Lusztig, Quivers, perverse sheaves, and quantized enveloping algebras, J. Amer. Math. Soc. 4 (1991), no. 2, 365–421. MR 1088333, DOI 10.1090/S0894-0347-1991-1088333-2
- George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1227098
- Peter J. McNamara, Representations of Khovanov-Lauda-Rouquier algebras III: symmetric affine type, Math. Z. 287 (2017), no. 1-2, 243–286. MR 3694676, DOI 10.1007/s00209-016-1825-4
- Peter J. McNamara, Finite dimensional representations of Khovanov-Lauda-Rouquier algebras I: Finite type, J. Reine Angew. Math. 707 (2015), 103–124. MR 3403455, DOI 10.1515/crelle-2013-0075
- P. J. McNamara, Representation theory of geometric extension algebras, arXiv:1701.07949, 2017.
- Hiraku Nakajima, Quiver varieties and $t$-analogs of $q$-characters of quantum affine algebras, Ann. of Math. (2) 160 (2004), no. 3, 1057–1097. MR 2144973, DOI 10.4007/annals.2004.160.1057
- Hiraku Nakajima, Quiver varieties and cluster algebras, Kyoto J. Math. 51 (2011), no. 1, 71–126. MR 2784748, DOI 10.1215/0023608X-2010-021
- Markus Reineke, Generic extensions and multiplicative bases of quantum groups at $q=0$, Represent. Theory 5 (2001), 147–163. MR 1835003, DOI 10.1090/S1088-4165-01-00111-X
- Olivier Schiffmann, Lectures on canonical and crystal bases of Hall algebras, Geometric methods in representation theory. II, Sémin. Congr., vol. 24, Soc. Math. France, Paris, 2012, pp. 143–259 (English, with English and French summaries). MR 3202708
- Sarah Scherotzke and Nicolo Sibilla, Quiver varieties and Hall algebras, Proc. Lond. Math. Soc. (3) 112 (2016), no. 6, 1002–1018. MR 3537330, DOI 10.1112/plms/pdw016
- M. Varagnolo and E. Vasserot, Perverse sheaves and quantum Grothendieck rings, Studies in memory of Issai Schur (Chevaleret/Rehovot, 2000) Progr. Math., vol. 210, Birkhäuser Boston, Boston, MA, 2003, pp. 345–365. MR 1985732
- M. Varagnolo and E. Vasserot, Canonical bases and KLR-algebras, J. Reine Angew. Math. 659 (2011), 67–100. MR 2837011, DOI 10.1515/CRELLE.2011.068
Bibliographic Information
- Yingjin Bi
- Affiliation: Department of Mathematical Sciences, Harbin Engineering University, Harbin 150001, People’s Republic of China
- MR Author ID: 1526107
- Email: yingjinbi@mail.bnu.edu.cn
- Received by editor(s): November 8, 2023
- Received by editor(s) in revised form: April 18, 2024, August 9, 2024, August 24, 2024, September 12, 2024, and September 26, 2024
- Published electronically: December 5, 2024
- Additional Notes: The author was supported by the China Scholarships Council. NO.202006040123
- © Copyright 2024 American Mathematical Society
- Journal: Represent. Theory 28 (2024), 552-592
- MSC (2020): Primary 17B37, 13E10, 20C08, 18Dxx, 81R10
- DOI: https://doi.org/10.1090/ert/680