Extended affine Lie algebras, affine vertex algebras, and general linear groups
HTML articles powered by AMS MathViewer
- by Fulin Chen, Haisheng Li, Shaobin Tan and Qing Wang;
- Represent. Theory 29 (2025), 60-107
- DOI: https://doi.org/10.1090/ert/686
- Published electronically: February 13, 2025
- HTML | PDF
Abstract:
In this paper, we explore natural connections among the representations of the extended affine Lie algebra $\widehat {\mathfrak {sl}_N}(\mathbb {C}_q)$ with $\mathbb {C}_q=\mathbb {C}_q[t_0^{\pm 1},t_1^{\pm 1}]$ an irrational quantum $2$-torus, the simple affine vertex algebra $L_{\widehat {\mathfrak {sl}_\infty }}(\ell ,0)$ with $\ell$ a positive integer, and Levi subgroups $\mathrm {GL}_{\mathbf {I}}$ of $\mathrm {GL}_\ell (\mathbb {C})$. First, we give a canonical isomorphism between the category of integrable restricted $\widehat {\mathfrak {sl}_N}(\mathbb {C}_q)$-modules of level $\ell$ and that of equivariant quasi $L_{\widehat {\mathfrak {sl}_\infty }}(\ell ,0)$-modules. Second, we classify irreducible $\mathbb N$-graded equivariant quasi $L_{\widehat {\mathfrak {sl}_\infty }}(\ell ,0)$-modules. Third, we establish a duality between irreducible $\mathbb N$-graded equivariant quasi $L_{\widehat {\mathfrak {sl}_\infty }}(\ell ,0)$-modules and irreducible regular $\mathrm {GL}_{\mathbf {I}}$-modules on certain fermionic Fock spaces. Fourth, we obtain an explicit realization of every irreducible $\mathbb N$-graded equivariant quasi $L_{\widehat {\mathfrak {sl}_\infty }}(\ell ,0)$-module. Fifth, we completely determine the following branchings: (i) The branching from $L_{\widehat {\mathfrak {sl}_\infty }}(\ell ,0)\otimes L_{\widehat {\mathfrak {sl}_\infty }}(\ell ’,0)$ to $L_{\widehat {\mathfrak {sl}_\infty }}(\ell +\ell ’,0)$ for quasi modules. (ii) The branching from $\widehat {\mathfrak {sl}_N}(\mathbb {C}_q)$ to its Levi subalgebras. (iii) The branching from $\widehat {\mathfrak {sl}_N}(\mathbb {C}_q)$ to its subalgebras $\widehat {\mathfrak {sl}_N}(\mathbb {C}_q[t_0^{\pm M_0},t_1^{\pm M_1}])$.References
- Bruce N. Allison, Saeid Azam, Stephen Berman, Yun Gao, and Arturo Pianzola, Extended affine Lie algebras and their root systems, Mem. Amer. Math. Soc. 126 (1997), no. 603, x+122. MR 1376741, DOI 10.1090/memo/0603
- Bruce Allison, Stephen Berman, John Faulkner, and Arturo Pianzola, Multiloop realization of extended affine Lie algebras and Lie tori, Trans. Amer. Math. Soc. 361 (2009), no. 9, 4807–4842. MR 2506428, DOI 10.1090/S0002-9947-09-04828-4
- Bruce N. Allison, Stephen Berman, Yun Gao, and Arturo Pianzola, A characterization of affine Kac-Moody Lie algebras, Comm. Math. Phys. 185 (1997), no. 3, 671–688. MR 1463057, DOI 10.1007/s002200050105
- Stephen Berman, Yun Gao, and Yaroslav S. Krylyuk, Quantum tori and the structure of elliptic quasi-simple Lie algebras, J. Funct. Anal. 135 (1996), no. 2, 339–389. MR 1370607, DOI 10.1006/jfan.1996.0013
- Stephen Berman, Yun Gao, and Shaobin Tan, A unified view of some vertex operator constructions, Israel J. Math. 134 (2003), 29–60. MR 1972174, DOI 10.1007/BF02787402
- Stephen Berman, Yuly Billig, and Jacek Szmigielski, Vertex operator algebras and the representation theory of toroidal algebras, Recent developments in infinite-dimensional Lie algebras and conformal field theory (Charlottesville, VA, 2000) Contemp. Math., vol. 297, Amer. Math. Soc., Providence, RI, 2002, pp. 1–26. MR 1919810, DOI 10.1090/conm/297/05090
- Stephen Berman and Jacek Szmigielski, Principal realization for the extended affine Lie algebra of type $\textrm {sl}_2$ with coordinates in a simple quantum torus with two generators, Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998) Contemp. Math., vol. 248, Amer. Math. Soc., Providence, RI, 1999, pp. 39–67. MR 1745254, DOI 10.1090/conm/248/03817
- Yuly Billig, A category of modules for the full toroidal Lie algebra, Int. Math. Res. Not. , posted on (2006), Art. ID 68395, 46. MR 2272091, DOI 10.1155/IMRN/2006/68395
- Yuly Billig, Representations of toroidal extended affine Lie algebras, J. Algebra 308 (2007), no. 1, 252–269. MR 2290921, DOI 10.1016/j.jalgebra.2006.09.010
- Yuly Billig and Michael Lau, Irreducible modules for extended affine Lie algebras, J. Algebra 327 (2011), 208–235. MR 2746036, DOI 10.1016/j.jalgebra.2010.09.031
- Yuly Billig and Kaiming Zhao, Weight modules over exp-polynomial Lie algebras, J. Pure Appl. Algebra 191 (2004), no. 1-2, 23–42. MR 2048305, DOI 10.1016/j.jpaa.2003.12.004
- Vyjayanthi Chari and Jacob Greenstein, Graded level zero integrable representations of affine Lie algebras, Trans. Amer. Math. Soc. 360 (2008), no. 6, 2923–2940. MR 2379781, DOI 10.1090/S0002-9947-07-04394-2
- Vyjayanthi Chari and Andrew Pressley, Weyl modules for classical and quantum affine algebras, Represent. Theory 5 (2001), 191–223. MR 1850556, DOI 10.1090/S1088-4165-01-00115-7
- Fulin Chen, Zhiqiang Li, and Shaobin Tan, Integrable representations for toroidal extended affine Lie algebras, J. Algebra 519 (2019), 228–252. MR 3880048, DOI 10.1016/j.jalgebra.2018.11.003
- Fulin Chen and Shaobin Tan, Integrable representations for extended affine Lie algebras coordinated by quantum tori, J. Lie Theory 23 (2013), no. 2, 383–405. MR 3113515
- Etsur\B{o} Date, Michio Jimbo, Masaki Kashiwara, and Tetsuji Miwa, Transformation groups for soliton equations. III. Operator approach to the Kadomtsev-Petviashvili equation, J. Phys. Soc. Japan 50 (1981), no. 11, 3806–3812. MR 638807, DOI 10.1143/JPSJ.50.3806
- Chongying Dong, Haisheng Li, and Geoffrey Mason, Regularity of rational vertex operator algebras, Adv. Math. 132 (1997), no. 1, 148–166. MR 1488241, DOI 10.1006/aima.1997.1681
- S. Eswara Rao, A class of integrable modules for the core of EALA coordinatized by quantum tori, J. Algebra 275 (2004), no. 1, 59–74. MR 2047440, DOI 10.1016/j.jalgebra.2004.01.003
- Alex J. Feingold and Igor B. Frenkel, Classical affine algebras, Adv. in Math. 56 (1985), no. 2, 117–172. MR 788937, DOI 10.1016/0001-8708(85)90027-1
- Edward Frenkel, Victor Kac, Andrey Radul, and Weiqiang Wang, $\scr W_{1+\infty }$ and $\scr W(\mathfrak {g}\mathfrak {l}_N)$ with central charge $N$, Comm. Math. Phys. 170 (1995), no. 2, 337–357. MR 1334399, DOI 10.1007/BF02108332
- I. B. Frenkel, Representations of affine Lie algebras, Hecke modular forms and Korteweg-de Vries type equations, Lie algebras and related topics (New Brunswick, N.J., 1981) Lecture Notes in Math., vol. 933, Springer, Berlin-New York, 1982, pp. 71–110. MR 675108
- Igor B. Frenkel, Yi-Zhi Huang, and James Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc. 104 (1993), no. 494, viii+64. MR 1142494, DOI 10.1090/memo/0494
- Igor Frenkel, James Lepowsky, and Arne Meurman, Vertex operator algebras and the Monster, Pure and Applied Mathematics, vol. 134, Academic Press, Inc., Boston, MA, 1988. MR 996026
- Igor B. Frenkel and Yongchang Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J. 66 (1992), no. 1, 123–168. MR 1159433, DOI 10.1215/S0012-7094-92-06604-X
- Yun Gao, Representations of extended affine Lie algebras coordinatized by certain quantum tori, Compositio Math. 123 (2000), no. 1, 1–25. MR 1784754, DOI 10.1023/A:1001830622499
- Yun Gao, Vertex operators arising from the homogeneous realization for $\widehat {\mathrm {gl}}_N$, Comm. Math. Phys. 211 (2000), no. 3, 745–777. MR 1773816, DOI 10.1007/s002200050834
- Yun Gao, Fermionic and bosonic representations of the extended affine Lie algebra $\mathfrak {gl}_N({\Bbb C}_q)$, Canad. Math. Bull. 45 (2002), no. 4, 623–633. Dedicated to Robert V. Moody. MR 1941230, DOI 10.4153/CMB-2002-057-3
- Yun Gao and Ziting Zeng, Hermitian representations of the extended affine Lie algebra $\widetilde {\mathfrak {g}\mathfrak {l}_2(\Bbb C_q)}$, Adv. Math. 207 (2006), no. 1, 244–265. MR 2264073, DOI 10.1016/j.aim.2005.11.012
- Maria I. Golenishcheva-Kutuzova and Victor G. Kac, $\Gamma$-conformal algebras, J. Math. Phys. 39 (1998), no. 4, 2290–2305. MR 1614735, DOI 10.1063/1.532289
- Roe Goodman and Nolan R. Wallach, Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol. 255, Springer, Dordrecht, 2009. MR 2522486, DOI 10.1007/978-0-387-79852-3
- Raphael Høegh-Krohn and Bruno Torrésani, Classification and construction of quasisimple Lie algebras, J. Funct. Anal. 89 (1990), no. 1, 106–136. MR 1040958, DOI 10.1016/0022-1236(90)90006-7
- Roger Howe, Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989), no. 2, 539–570. MR 986027, DOI 10.1090/S0002-9947-1989-0986027-X
- Roger Howe, Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond, The Schur lectures (1992) (Tel Aviv), Israel Math. Conf. Proc., vol. 8, Bar-Ilan Univ., Ramat Gan, 1995, pp. 1–182. MR 1321638
- H. P. Jakobsen and V. G. Kac, A new class of unitarizable highest weight representations of infinite-dimensional Lie algebras, Nonlinear equations in classical and quantum field theory (Meudon/Paris, 1983/1984) Lecture Notes in Phys., vol. 226, Springer, Berlin, 1985, pp. 1–20. MR 802097, DOI 10.1007/3-540-15213-X_{6}7
- Cuipo Jiang and Zongzhu Lin, Tensor decomposition, parafermions, level-rank duality, and reciprocity law for vertex operator algebras, Trans. Amer. Math. Soc. 375 (2022), no. 12, 8325–8352. MR 4504640, DOI 10.1090/tran/8207
- Cuipo Jiang and Ching Hung Lam, Level-rank duality for vertex operator algebras of types $B$ and $D$, Bull. Inst. Math. Acad. Sin. (N.S.) 14 (2019), no. 1, 31–54. MR 3888282
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- Victor G. Kac, Pierluigi Möseneder Frajria, Paolo Papi, and Feng Xu, Conformal embeddings and simple current extensions, Int. Math. Res. Not. IMRN 14 (2015), 5229–5288. MR 3384440, DOI 10.1093/imrn/rnu092
- Stephen S. Kudla, Seesaw dual reductive pairs, Automorphic forms of several variables (Katata, 1983) Progr. Math., vol. 46, Birkhäuser Boston, Boston, MA, 1984, pp. 244–268. MR 763017
- James Lepowsky and Haisheng Li, Introduction to vertex operator algebras and their representations, Progress in Mathematics, vol. 227, Birkhäuser Boston, Inc., Boston, MA, 2004. MR 2023933, DOI 10.1007/978-0-8176-8186-9
- James Lepowsky and Mirko Primc, Structure of the standard modules for the affine Lie algebra $A^{(1)}_1$, Contemporary Mathematics, vol. 46, American Mathematical Society, Providence, RI, 1985. MR 814303, DOI 10.1090/conm/046
- Hai-Sheng Li, Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules, Moonshine, the Monster, and related topics (South Hadley, MA, 1994) Contemp. Math., vol. 193, Amer. Math. Soc., Providence, RI, 1996, pp. 203–236. MR 1372724, DOI 10.1090/conm/193/02373
- Haisheng Li, A new construction of vertex algebras and quasi-modules for vertex algebras, Adv. Math. 202 (2006), no. 1, 232–286. MR 2218823, DOI 10.1016/j.aim.2005.03.008
- Haisheng Li, On certain generalizations of twisted affine Lie algebras and quasimodules for $\Gamma$-vertex algebras, J. Pure Appl. Algebra 209 (2007), no. 3, 853–871. MR 2298863, DOI 10.1016/j.jpaa.2006.08.004
- Haisheng Li, Twisted modules and quasi-modules for vertex operator algebras, Lie algebras, vertex operator algebras and their applications, Contemp. Math., vol. 442, Amer. Math. Soc., Providence, RI, 2007, pp. 389–400. MR 2372574, DOI 10.1090/conm/442/08537
- Haisheng Li, Shaobin Tan, and Qing Wang, Trigonometric Lie algebras, affine Lie algebras, and vertex algebras, Adv. Math. 363 (2020), 106985, 34. MR 4052557, DOI 10.1016/j.aim.2020.106985
- Erhard Neher, Extended affine Lie algebras, C. R. Math. Acad. Sci. Soc. R. Can. 26 (2004), no. 3, 90–96 (English, with English and French summaries). MR 2083842
- M. Varagnolo and E. Vasserot, Schur duality in the toroidal setting, Comm. Math. Phys. 182 (1996), no. 2, 469–483. MR 1447301, DOI 10.1007/BF02517898
- M. Varagnolo and E. Vasserot, Double-loop algebras and the Fock space, Invent. Math. 133 (1998), no. 1, 133–159. MR 1626481, DOI 10.1007/s002220050242
- Weiqiang Wang, Dual pairs and tensor categories of modules over Lie algebras $\widehat {\mathrm {gl}}_\infty$ and $\scr W_{1+\infty }$, J. Algebra 216 (1999), no. 1, 159–177. MR 1694570, DOI 10.1006/jabr.1998.7786
- Weiqiang Wang, Duality in infinite-dimensional Fock representations, Commun. Contemp. Math. 1 (1999), no. 2, 155–199. MR 1696098, DOI 10.1142/S0219199799000080
Bibliographic Information
- Fulin Chen
- Affiliation: School of Mathematical Sciences, Xiamen University, Xiamen 361005, People’s Republic of China
- MR Author ID: 936518
- Email: chenf@xmu.edu.cn
- Haisheng Li
- Affiliation: Department of Mathematical Sciences, Rutgers University, Camden, New Jersey 08102
- MR Author ID: 256893
- ORCID: 0000-0003-3710-616X
- Email: hli@camden.rutgers.edu
- Shaobin Tan
- Affiliation: School of Mathematical Sciences, Xiamen University, Xiamen 361005, People’s Republic of China
- Email: tans@xmu.edu.cn
- Qing Wang
- Affiliation: School of Mathematical Sciences, Xiamen University, Xiamen 361005, People’s Republic of China
- MR Author ID: 820974
- Email: qingwang@xmu.edu.cn
- Received by editor(s): March 28, 2024
- Received by editor(s) in revised form: December 3, 2024
- Published electronically: February 13, 2025
- Additional Notes: The first author was partially supported by China NSF grant (No. 12471029), the Natural Science Foundation of Xiamen, China (No. 3502Z202473005), the Fundamental Research Funds for the Central Universities (No. 20720230020). The third author was partially supported by China NSF grants (No. 12131018). The fourth author was partially supported by China NSF grants (Nos. 12071385, 12161141001)
- © Copyright 2025 by the authors under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License (CC BY NC ND 4.0)
- Journal: Represent. Theory 29 (2025), 60-107
- MSC (2020): Primary 17B67, 17B69
- DOI: https://doi.org/10.1090/ert/686
- MathSciNet review: 4864485