Arithmetic geometry of character varieties with regular monodromy
HTML articles powered by AMS MathViewer
- by Masoud Kamgarpour, GyeongHyeon Nam and Anna Puskás;
- Represent. Theory 29 (2025), 347-378
- DOI: https://doi.org/10.1090/ert/693
- Published electronically: June 12, 2025
Abstract:
We count points on a family of smooth character varieties with regular semisimple and regular unipotent monodromies. We show that these varieties are polynomial count and obtain an explicit expression for their $E$-polynomials using complex representation theory of finite reductive groups. As an application, we give an example of a cohomologically rigid representation which is not physically rigid.References
- Jarod Alper, Adequate moduli spaces and geometrically reductive group schemes, Algebr. Geom. 1 (2014), no. 4, 489–531. MR 3272912, DOI 10.14231/AG-2014-022
- Mathieu Ballandras, Intersection cohomology of character varieties for punctured Riemann surfaces, J. Éc. polytech. Math. 10 (2023), 141–198 (English, with English and French summaries). MR 4536297, DOI 10.5802/jep.215
- David Baraglia and Pedram Hekmati, Arithmetic of singular character varieties and their $E$-polynomials, Proc. Lond. Math. Soc. (3) 114 (2017), no. 2, 293–332. MR 3653231, DOI 10.1112/plms.12008
- Michael Bate, Benjamin Martin, Gerhard Röhrle, and Rudolf Tange, Complete reducibility and separability, Trans. Amer. Math. Soc. 362 (2010), no. 8, 4283–4311. MR 2608407, DOI 10.1090/S0002-9947-10-04901-9
- A. Beilinson and V. Drinfeld, Quantization of Hitchin’s integrable system and Hecke eigensheaves, http://math.uchicago.edu/~drinfeld/langlands/QuantizationHitchin.pdf, 1997.
- David Ben-Zvi and David Nadler, Betti geometric Langlands, Algebraic geometry: Salt Lake City 2015, Proc. Sympos. Pure Math., vol. 97, Amer. Math. Soc., Providence, RI, 2018, pp. 3–41. MR 3821166, DOI 10.1090/pspum/097.2/01
- P. P. Boalch, Geometry and braiding of Stokes data; fission and wild character varieties, Ann. of Math. (2) 179 (2014), no. 1, 301–365. MR 3126570, DOI 10.4007/annals.2014.179.1.5
- N. Bridger and M. Kamgarpour, Character stacks are PORC count, arXiv:2203.04521 (2022).
- V. Cambo, On the $E$-polynomial of parabolic $\mathrm {Sp}_{2n}$-character varieties, arXiv:1708.00393 (2017).
- Mark Andrea A. de Cataldo, Tamás Hausel, and Luca Migliorini, Topology of Hitchin systems and Hodge theory of character varieties: the case $A_1$, Ann. of Math. (2) 175 (2012), no. 3, 1329–1407. MR 2912707, DOI 10.4007/annals.2012.175.3.7
- Pierre Deligne and Yuval Z. Flicker, Counting local systems with principal unipotent local monodromy, Ann. of Math. (2) 178 (2013), no. 3, 921–982. MR 3092473, DOI 10.4007/annals.2013.178.3.3
- P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), no. 1, 103–161. MR 393266, DOI 10.2307/1971021
- D. I. Deriziotis, On the number of conjugacy classes in finite groups of Lie type, Comm. Algebra 13 (1985), no. 5, 1019–1045. MR 780636, DOI 10.1080/00927878508823204
- D. I. Deriziotis and D. F. Holt, The Möbius function of the lattice of closed subsystems of a root system, Comm. Algebra 21 (1993), no. 5, 1543–1570. MR 1213972, DOI 10.1080/00927879308824636
- François Digne and Jean Michel, Representations of finite groups of Lie type, London Mathematical Society Student Texts, vol. 95, Cambridge University Press, Cambridge, 2020. Second edition of [ 1118841]. MR 4211777, DOI 10.1017/9781108673655
- Peter Fleischmann and Ingo Janiszczak, The lattices and Möbius functions of stable closed subrootsystems and hyperplane complements for classical Weyl groups, Manuscripta Math. 72 (1991), no. 4, 375–403. MR 1121421, DOI 10.1007/BF02568285
- Peter Fleischmann and Ingo Janiszczak, Combinatorics and Poincaré polynomials of hyperplane complements for exceptional Weyl groups, J. Combin. Theory Ser. A 63 (1993), no. 2, 257–274. MR 1223684, DOI 10.1016/0097-3165(93)90060-L
- Edward Frenkel and Benedict Gross, A rigid irregular connection on the projective line, Ann. of Math. (2) 170 (2009), no. 3, 1469–1512. MR 2600880, DOI 10.4007/annals.2009.170.1469
- Meinolf Geck and Gunter Malle, The character theory of finite groups of Lie type, Cambridge Studies in Advanced Mathematics, vol. 187, Cambridge University Press, Cambridge, 2020. A guided tour. MR 4211779, DOI 10.1017/9781108779081
- J. A. Green, G. I. Lehrer, and G. Lusztig, On the degrees of certain group characters, Quart. J. Math. Oxford Ser. (2) 27 (1976), no. 105, 1–4. MR 393216, DOI 10.1093/qmath/27.1.1
- Tamás Hausel, Emmanuel Letellier, and Fernando Rodriguez-Villegas, Arithmetic harmonic analysis on character and quiver varieties, Duke Math. J. 160 (2011), no. 2, 323–400. MR 2852119, DOI 10.1215/00127094-1444258
- Tamás Hausel and Fernando Rodriguez-Villegas, Mixed Hodge polynomials of character varieties, Invent. Math. 174 (2008), no. 3, 555–624. With an appendix by Nicholas M. Katz. MR 2453601, DOI 10.1007/s00222-008-0142-x
- Sebastian Herpel, On the smoothness of centralizers in reductive groups, Trans. Amer. Math. Soc. 365 (2013), no. 7, 3753–3774. MR 3042602, DOI 10.1090/S0002-9947-2012-05745-X
- James E. Humphreys, Conjugacy classes in semisimple algebraic groups, Mathematical Surveys and Monographs, vol. 43, American Mathematical Society, Providence, RI, 1995. MR 1343976, DOI 10.1090/surv/043
- Stefan Jackowski, James McClure, and Bob Oliver, Self-homotopy equivalences of classifying spaces of compact connected Lie groups, Fund. Math. 147 (1995), no. 2, 99–126. MR 1341725, DOI 10.4064/fm-147-2-99-126
- Masoud Kamgarpour, Stacky abelianization of algebraic groups, Transform. Groups 14 (2009), no. 4, 825–846. MR 2577200, DOI 10.1007/s00031-009-9067-8
- M. Kamgarpour, G. Nam, B. Whitbread, and S. Giannini, Counting points on character varieties, arXiv:2409.04735 (2024).
- Masoud Kamgarpour and Travis Schedler, Ramified Satake isomorphisms for strongly parabolic characters, Doc. Math. 18 (2013), 1275–1300. MR 3138847, DOI 10.4171/dm/428
- Nicholas M. Katz, Rigid local systems, Annals of Mathematics Studies, vol. 139, Princeton University Press, Princeton, NJ, 1996. MR 1366651, DOI 10.1515/9781400882595
- Robert W. Kilmoyer, Principal series representations of finite Chevalley groups, J. Algebra 51 (1978), no. 1, 300–319. MR 487479, DOI 10.1016/0021-8693(78)90149-7
- Vladimir Petrov Kostov, The Deligne-Simpson problem—a survey, J. Algebra 281 (2004), no. 1, 83–108. MR 2091962, DOI 10.1016/j.jalgebra.2004.07.013
- Emmanuel Letellier, Character varieties with Zariski closures of $\mathrm {GL}_n$-conjugacy classes at punctures, Selecta Math. (N.S.) 21 (2015), no. 1, 293–344. MR 3300418, DOI 10.1007/s00029-014-0163-9
- Emmanuel Letellier and Fernando Rodriguez-Villegas, E-series of character varieties of non-orientable surfaces, Ann. Inst. Fourier (Grenoble) 73 (2023), no. 4, 1385–1420 (English, with English and French summaries). MR 4613610, DOI 10.5802/aif.3540
- A. D. Mednyh, Determination of the number of nonequivalent coverings over a compact Riemann surface, Dokl. Akad. Nauk SSSR 239 (1978), no. 2, 269–271 (Russian). MR 490616
- Anton Mellit, Poincaré polynomials of moduli spaces of Higgs bundles and character varieties (no punctures), Invent. Math. 221 (2020), no. 1, 301–327. MR 4105090, DOI 10.1007/s00222-020-00950-1
- D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906, DOI 10.1007/978-3-642-57916-5
- Rimhak Ree, Commutators in semi-simple algebraic groups, Proc. Amer. Math. Soc. 15 (1964), 457–460. MR 161944, DOI 10.1090/S0002-9939-1964-0161944-X
- R. W. Richardson Jr., Conjugacy classes in Lie algebras and algebraic groups, Ann. of Math. (2) 86 (1967), 1–15. MR 217079, DOI 10.2307/1970359
- Olivier Schiffmann, Indecomposable vector bundles and stable Higgs bundles over smooth projective curves, Ann. of Math. (2) 183 (2016), no. 1, 297–362. MR 3432585, DOI 10.4007/annals.2016.183.1.6
- Jean-Pierre Serre, Complex semisimple Lie algebras, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2001. Translated from the French by G. A. Jones; Reprint of the 1987 edition. MR 1808366, DOI 10.1007/978-3-642-56884-8
- Carlos T. Simpson, Products of matrices, Differential geometry, global analysis, and topology (Halifax, NS, 1990) CMS Conf. Proc., vol. 12, Amer. Math. Soc., Providence, RI, 1991, pp. 157–185. MR 1158474
- Carlos T. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5–95. MR 1179076, DOI 10.1007/BF02699491
- Carlos T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety. I, Inst. Hautes Études Sci. Publ. Math. 79 (1994), 47–129. MR 1307297, DOI 10.1007/BF02698887
- T. A. Springer, Some arithmetical results on semi-simple Lie algebras, Inst. Hautes Études Sci. Publ. Math. 30 (1966), 115–141. MR 206171, DOI 10.1007/BF02684358
- Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 208, Cambridge University Press, Cambridge, [2024] ©2024. Second edition [of 1676282]; With an appendix by Sergey Fomin. MR 4621625
- Robert Steinberg, Regular elements of semisimple algebraic groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 49–80. MR 180554, DOI 10.1007/BF02684397
- R. Vakil, The rising sea: foundations of algebraic geometry, preprint, http://math.stanford.edu/~vakil/216blog/FOAGnov1817public.pdf, 2017.
Bibliographic Information
- Masoud Kamgarpour
- Affiliation: School of Mathematics and Physics, The University of Queensland, Queensland 4072, Australia
- MR Author ID: 889657
- Email: masoud@uq.edu.au
- GyeongHyeon Nam
- Affiliation: Department of Mathematics, Ajou University, Suwon 16499, Republic of Korea
- Address at time of publication: Department of Mathematics and System Analysis, Aalto University, 02150 Espoo, Finland
- MR Author ID: 1650426
- ORCID: 0000-0002-7868-7119
- Email: gyeonghyeon.nam@aalto.fi
- Anna Puskás
- Affiliation: School of Mathematics & Statistics, University of Glasgow, G12 8QQ Glasgow, Scotland
- Email: anna.puskas@glasgow.ac.uk
- Received by editor(s): February 6, 2024
- Received by editor(s) in revised form: October 31, 2024, and January 27, 2025
- Published electronically: June 12, 2025
- Additional Notes: The first author was supported by Australian Research Council Discovery Project DP200102316. The second author was supported by an Australian Government Postgraduate Award and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2024-00334558). The third author was supported by an Australian Research Council Discovery Early Career Research Award DE200101802.
- © Copyright 2025 by the authors under Creative Commons Attribution 3.0 License (CC BY 3.0)
- Journal: Represent. Theory 29 (2025), 347-378
- MSC (2020): Primary 14M35, 14D23, 11G25
- DOI: https://doi.org/10.1090/ert/693
- MathSciNet review: 4919572