Non-commutative deformations of perverse coherent sheaves and rational curves
Author:
Yujiro Kawamata
Journal:
J. Algebraic Geom.
DOI:
https://doi.org/10.1090/jag/805
Published electronically:
May 17, 2022
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We consider non-commutative deformations of sheaves on algebraic varieties. We develop some tools to determine parameter algebras of versal non-commutative deformations for partial simple collections and the structure sheaves of smooth rational curves. We apply them to universal flopping contractions of length $2$ and higher. We confirm Donovan-Wemyss conjecture in the case of deformations of Laufer’s flops.
References
- Paul S. Aspinwall and David R. Morrison, Quivers from matrix factorizations, Comm. Math. Phys. 313 (2012), no. 3, 607–633. MR 2945618, DOI 10.1007/s00220-012-1520-1
- A. I. Bondal, Representations of associative algebras and coherent sheaves, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 1, 25–44 (Russian); English transl., Math. USSR-Izv. 34 (1990), no. 1, 23–42. MR 992977, DOI 10.1070/IM1990v034n01ABEH000583
- Gavin Brown and Michael Wemyss, Gopakumar-Vafa invariants do not determine flops, Comm. Math. Phys. 361 (2018), no. 1, 143–154. MR 3825938, DOI 10.1007/s00220-017-3038-z
- Tom Bridgeland, Flops and derived categories, Invent. Math. 147 (2002), no. 3, 613–632. MR 1893007, DOI 10.1007/s002220100185
- Carina Curto and David R. Morrison, Threefold flops via matrix factorization, J. Algebraic Geom. 22 (2013), no. 4, 599–627. MR 3084719, DOI 10.1090/S1056-3911-2013-00633-5
- Will Donovan and Michael Wemyss, Noncommutative deformations and flops, Duke Math. J. 165 (2016), no. 8, 1397–1474. MR 3504176, DOI 10.1215/00127094-3449887
- David Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), no. 1, 35–64. MR 570778, DOI 10.1090/S0002-9947-1980-0570778-7
- Zheng Hua, Contraction algebra and singularity of three-dimensional flopping contraction, Math. Z. 290 (2018), no. 1-2, 431–443. MR 3848439, DOI 10.1007/s00209-017-2024-7
- Zheng Hua and Yukinobu Toda, Contraction algebra and invariants of singularities, Int. Math. Res. Not. IMRN 10 (2018), 3173–3198. MR 3805201, DOI 10.1093/imrn/rnw333
- Joseph Karmazyn, The length classification of threefold flops via noncommutative algebras, Adv. Math. 343 (2019), 393–447. MR 3883210, DOI 10.1016/j.aim.2018.11.023
- Sheldon Katz, Genus zero Gopakumar-Vafa invariants of contractible curves, J. Differential Geom. 79 (2008), no. 2, 185–195. MR 2420017
- Sheldon Katz and David R. Morrison, Gorenstein threefold singularities with small resolutions via invariant theory for Weyl groups, J. Algebraic Geom. 1 (1992), no. 3, 449–530. MR 1158626
- Yujiro Kawamata, General hyperplane sections of nonsingular flops in dimension $3$, Math. Res. Lett. 1 (1994), no. 1, 49–52. MR 1258489, DOI 10.4310/MRL.1994.v1.n1.a6
- Yujiro Kawamata, On multi-pointed non-commutative deformations and Calabi-Yau threefolds, Compos. Math. 154 (2018), no. 9, 1815–1842. MR 3867285, DOI 10.1112/s0010437x18007248
- Yujiro Kawamata, Non-commutative deformations of simple objects in a category of perverse coherent sheaves, Selecta Math. (N.S.) 26 (2020), no. 3, Paper No. 43, 22. MR 4117994, DOI 10.1007/s00029-020-00570-w
- Yujiro Kawamata, On non-commutative formal deformations of coherent sheaves on an algebraic variety, EMS Surv. Math. Sci. 8 (2021), no. 1-2, 237–263. MR 4307209, DOI 10.4171/emss/49
- Henry B. Laufer, On $\textbf {C}P^{1}$ as an exceptional set, Recent developments in several complex variables (Proc. Conf., Princeton Univ., Princeton, N. J., 1979) Ann. of Math. Stud., vol. 100, Princeton Univ. Press, Princeton, N.J., 1981, pp. 261–275. MR 627762
- John N. Mather and Stephen S. T. Yau, Classification of isolated hypersurface singularities by their moduli algebras, Invent. Math. 69 (1982), no. 2, 243–251. MR 674404, DOI 10.1007/BF01399504
- Henry C. Pinkham, Factorization of birational maps in dimension $3$, Singularities, Part 2 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 343–371. MR 713260
- Miles Reid, Minimal models of canonical $3$-folds, Algebraic varieties and analytic varieties (Tokyo, 1981) Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam, 1983, pp. 131–180. MR 715649, DOI 10.2969/aspm/00110131
- Jeremy Rickard, Morita theory for derived categories, J. London Math. Soc. (2) 39 (1989), no. 3, 436–456. MR 1002456, DOI 10.1112/jlms/s2-39.3.436
- Yukinobu Toda, Non-commutative width and Gopakumar-Vafa invariants, Manuscripta Math. 148 (2015), no. 3-4, 521–533. MR 3414491, DOI 10.1007/s00229-015-0760-8
- Michel Van den Bergh, Three-dimensional flops and noncommutative rings, Duke Math. J. 122 (2004), no. 3, 423–455. MR 2057015, DOI 10.1215/S0012-7094-04-12231-6
- Michel Van den Bergh, Calabi-Yau algebras and superpotentials, Selecta Math. (N.S.) 21 (2015), no. 2, 555–603. MR 3338683, DOI 10.1007/s00029-014-0166-6
- O. van Garderen, Donaldson-Thomas invariants of length 2 flops, arXiv:2008.02591, 2020.
References
- Paul S. Aspinwall and David R. Morrison, Quivers from matrix factorizations, Comm. Math. Phys. 313 (2012), no. 3, 607–633. MR 2945618, DOI 10.1007/s00220-012-1520-1
- A. I. Bondal, Representations of associative algebras and coherent sheaves, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 1, 25–44 (Russian); English transl., Math. USSR-Izv. 34 (1990), no. 1, 23–42. MR 992977, DOI 10.1070/IM1990v034n01ABEH000583
- Gavin Brown and Michael Wemyss, Gopakumar-Vafa invariants do not determine flops, Comm. Math. Phys. 361 (2018), no. 1, 143–154. MR 3825938, DOI 10.1007/s00220-017-3038-z
- Tom Bridgeland, Flops and derived categories, Invent. Math. 147 (2002), no. 3, 613–632. MR 1893007, DOI 10.1007/s002220100185
- Carina Curto and David R. Morrison, Threefold flops via matrix factorization, J. Algebraic Geom. 22 (2013), no. 4, 599–627. MR 3084719, DOI 10.1090/S1056-3911-2013-00633-5
- Will Donovan and Michael Wemyss, Noncommutative deformations and flops, Duke Math. J. 165 (2016), no. 8, 1397–1474. MR 3504176, DOI 10.1215/00127094-3449887
- David Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), no. 1, 35–64. MR 570778, DOI 10.2307/1999875
- Zheng Hua, Contraction algebra and singularity of three-dimensional flopping contraction, Math. Z. 290 (2018), no. 1-2, 431–443. MR 3848439, DOI 10.1007/s00209-017-2024-7
- Zheng Hua and Yukinobu Toda, Contraction algebra and invariants of singularities, Int. Math. Res. Not. IMRN 10 (2018), 3173–3198. MR 3805201, DOI 10.1093/imrn/rnw333
- Joseph Karmazyn, The length classification of threefold flops via noncommutative algebras, Adv. Math. 343 (2019), 393–447. MR 3883210, DOI 10.1016/j.aim.2018.11.023
- Sheldon Katz, Genus zero Gopakumar-Vafa invariants of contractible curves, J. Differential Geom. 79 (2008), no. 2, 185–195. MR 2420017
- Sheldon Katz and David R. Morrison, Gorenstein threefold singularities with small resolutions via invariant theory for Weyl groups, J. Algebraic Geom. 1 (1992), no. 3, 449–530. MR 1158626
- Yujiro Kawamata, General hyperplane sections of nonsingular flops in dimension $3$, Math. Res. Lett. 1 (1994), no. 1, 49–52. MR 1258489, DOI 10.4310/MRL.1994.v1.n1.a6
- Yujiro Kawamata, On multi-pointed non-commutative deformations and Calabi-Yau threefolds, Compos. Math. 154 (2018), no. 9, 1815–1842. MR 3867285, DOI 10.1112/s0010437x18007248
- Yujiro Kawamata, Non-commutative deformations of simple objects in a category of perverse coherent sheaves, Selecta Math. (N.S.) 26 (2020), no. 3, Paper No. 43, 22. MR 4117994, DOI 10.1007/s00029-020-00570-w
- Yujiro Kawamata, On non-commutative formal deformations of coherent sheaves on an algebraic variety, EMS Surv. Math. Sci. 8 (2021), no. 1-2, 237–263. MR 4307209, DOI 10.4171/emss/49
- Henry B. Laufer, On ${\mathbf C}P^{1}$ as an exceptional set, Recent developments in several complex variables (Proc. Conf., Princeton Univ., Princeton, N. J., 1979) Ann. of Math. Stud., vol. 100, Princeton Univ. Press, Princeton, N.J., 1981, pp. 261–275. MR 627762
- John N. Mather and Stephen S. T. Yau, Classification of isolated hypersurface singularities by their moduli algebras, Invent. Math. 69 (1982), no. 2, 243–251. MR 674404, DOI 10.1007/BF01399504
- Henry C. Pinkham, Factorization of birational maps in dimension $3$, Singularities, Part 2 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 343–371. MR 713260
- Miles Reid, Minimal models of canonical $3$-folds, Algebraic varieties and analytic varieties (Tokyo, 1981) Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam, 1983, pp. 131–180. MR 715649, DOI 10.2969/aspm/00110131
- Jeremy Rickard, Morita theory for derived categories, J. London Math. Soc. (2) 39 (1989), no. 3, 436–456. MR 1002456, DOI 10.1112/jlms/s2-39.3.436
- Yukinobu Toda, Non-commutative width and Gopakumar-Vafa invariants, Manuscripta Math. 148 (2015), no. 3-4, 521–533. MR 3414491, DOI 10.1007/s00229-015-0760-8
- Michel Van den Bergh, Three-dimensional flops and noncommutative rings, Duke Math. J. 122 (2004), no. 3, 423–455. MR 2057015, DOI 10.1215/S0012-7094-04-12231-6
- Michel Van den Bergh, Calabi-Yau algebras and superpotentials, Selecta Math. (N.S.) 21 (2015), no. 2, 555–603. MR 3338683, DOI 10.1007/s00029-014-0166-6
- O. van Garderen, Donaldson-Thomas invariants of length 2 flops, arXiv:2008.02591, 2020.
Additional Information
Yujiro Kawamata
Affiliation:
Graduate School of Mathematical Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153-8914 Japan; Morningside Center of Mathematics, Chinese Academy of Sciences, Haidian District, Beijing 100190, People’s Republic of China; Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea; and National Center for Theoretical Sciences, Mathematics Division, National Taiwan University, Taipei 106, Taiwan
MR Author ID:
99410
Email:
kawamata@ms.u-tokyo.ac.jp
Received by editor(s):
June 17, 2020
Published electronically:
May 17, 2022
Additional Notes:
This work was partly supported by JSPS Grant-in-Aid 16H02141.
Article copyright:
© Copyright 2022
University Press, Inc.