Global rigidity of the period mapping
Author:
Benson Farb
Journal:
J. Algebraic Geom.
DOI:
https://doi.org/10.1090/jag/809
Published electronically:
October 24, 2022
Full-text PDF
Abstract |
References |
Additional Information
Abstract: Let ${\mathcal M}_{g,n}$ denote the moduli space of smooth, genus $g\geq 1$ curves with $n\geq 0$ marked points. Let ${\mathcal A}_h$ denote the moduli space of $h$-dimensional, principally polarized abelian varieties. Let $g\geq 3$ and $h\leq g$. If $F:{\mathcal M}_{g,n} \to {\mathcal A}_H$ is a nonholomorphic map, then $h=g$ and $F$ is the classical period mapping, assigning to a Riemann surface $X$ its Jacobian.
References
- Stergios Antonakoudis, Javier Aramayona, and Juan Souto, Holomorphic maps between moduli spaces, Ann. Inst. Fourier (Grenoble) 68 (2018), no. 1, 217–228 (English, with English and French summaries). MR 3795477
- Armand Borel and Raghavan Narasimhan, Uniqueness conditions for certain holomorphic mappings, Invent. Math. 2 (1967), 247–255. MR 209517, DOI 10.1007/BF01425403
- James Eells Jr. and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109–160. MR 164306, DOI 10.2307/2373037
- Gavril Farkas, Prym varieties and their moduli, Contributions to algebraic geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012, pp. 215–255. MR 2976944, DOI 10.4171/114-1/8
- Helmut A. Hamm and Lê Dũng Tráng, Lefschetz theorems on quasiprojective varieties, Bull. Soc. Math. France 113 (1985), no. 2, 123–142 (English, with French summary). MR 820315
- A. Javapeykar and D. Litt, Integral points on algebraic subvarieties of period domains: from number fields to finitely generated fields, arXiv:1907.13536v4, 2021.
- M. Korkmaz, The symplectic representation of the mapping class group is unique, arXiv:1108.3241, 2011.
- Shoshichi Kobayashi and Takushiro Ochiai, Satake compactification and the great Picard theorem, J. Math. Soc. Japan 23 (1971), 340–350. MR 296357, DOI 10.2969/jmsj/02320340
- Martin Möller, Variations of Hodge structures of a Teichmüller curve, J. Amer. Math. Soc. 19 (2006), no. 2, 327–344. MR 2188128, DOI 10.1090/S0894-0347-05-00512-6
- Curtis T. McMullen, Rigidity of Teichmüller curves, Math. Res. Lett. 16 (2009), no. 4, 647–649. MR 2525030, DOI 10.4310/MRL.2009.v16.n4.a7
- J. Mennicke, Zur Theorie der Siegelschen Modulgruppe, Math. Ann. 159 (1965), 115–129 (German). MR 181676, DOI 10.1007/BF01360285
- Junjiro Noguchi, Some problems in value distribution and hyperbolic manifolds, Sūrikaisekikenkyūsho K\B{o}kyūroku 819 (1993), 66–79. International Symposium “Holomorphic Mappings, Diophantine Geometry and Related Topics” (Kyoto, 1992). MR 1247069
- Masa-Hiko Sait\B{o}, Classification of nonrigid families of abelian varieties, Tohoku Math. J. (2) 45 (1993), no. 2, 159–189. MR 1215923, DOI 10.2748/tmj/1178225915
- C. Serván, On the uniqueness of the Prym map, in preparation.
References
- Stergios Antonakoudis, Javier Aramayona, and Juan Souto, Holomorphic maps between moduli spaces, Ann. Inst. Fourier (Grenoble) 68 (2018), no. 1, 217–228 (English, with English and French summaries). MR 3795477
- Armand Borel and Raghavan Narasimhan, Uniqueness conditions for certain holomorphic mappings, Invent. Math. 2 (1967), 247–255. MR 209517, DOI 10.1007/BF01425403
- James Eells Jr. and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109–160. MR 164306, DOI 10.2307/2373037
- Gavril Farkas, Prym varieties and their moduli, Contributions to algebraic geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012, pp. 215–255. MR 2976944, DOI 10.4171/114-1/8
- Helmut A. Hamm and Lê Dũng Tráng, Lefschetz theorems on quasiprojective varieties, Bull. Soc. Math. France 113 (1985), no. 2, 123–142 (English, with French summary). MR 820315
- A. Javapeykar and D. Litt, Integral points on algebraic subvarieties of period domains: from number fields to finitely generated fields, arXiv:1907.13536v4, 2021.
- M. Korkmaz, The symplectic representation of the mapping class group is unique, arXiv:1108.3241, 2011.
- Shoshichi Kobayashi and Takushiro Ochiai, Satake compactification and the great Picard theorem, J. Math. Soc. Japan 23 (1971), 340–350. MR 296357, DOI 10.2969/jmsj/02320340
- Martin Möller, Variations of Hodge structures of a Teichmüller curve, J. Amer. Math. Soc. 19 (2006), no. 2, 327–344. MR 2188128, DOI 10.1090/S0894-0347-05-00512-6
- Curtis T. McMullen, Rigidity of Teichmüller curves, Math. Res. Lett. 16 (2009), no. 4, 647–649. MR 2525030, DOI 10.4310/MRL.2009.v16.n4.a7
- J. Mennicke, Zur Theorie der Siegelschen Modulgruppe, Math. Ann. 159 (1965), 115–129 (German). MR 181676, DOI 10.1007/BF01360285
- Junjiro Noguchi, Some problems in value distribution and hyperbolic manifolds, Sūrikaisekikenkyūsho Kōkyūroku 819 (1993), 66–79. International Symposium “Holomorphic Mappings, Diophantine Geometry and Related Topics” (Kyoto, 1992). MR 1247069
- Masa-Hiko Saitō, Classification of nonrigid families of abelian varieties, Tohoku Math. J. (2) 45 (1993), no. 2, 159–189. MR 1215923, DOI 10.2748/tmj/1178225915
- C. Serván, On the uniqueness of the Prym map, in preparation.
Additional Information
Benson Farb
Affiliation:
Department of Mathematics, University of Chicago, Chicago, Illinois 60637
MR Author ID:
329207
Email:
bensonfarb@gmail.com
Received by editor(s):
June 26, 2021
Received by editor(s) in revised form:
March 13, 2022
Published electronically:
October 24, 2022
Additional Notes:
This work was supported in part by National Science Foundation Grant No. DMS-181772, the Eckhardt Faculty Fund, and the Jump Trading Mathlab Research Fund
Article copyright:
© Copyright 2022
University Press, Inc.