K3 surface entropy and automorphism groups
Author:
Xun Yu
Journal:
J. Algebraic Geom.
DOI:
https://doi.org/10.1090/jag/828
Published electronically:
March 27, 2024
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We derive a characterization of the complex projective K3 surfaces which have automorphisms of positive entropy in terms of their Néron–Severi lattices. Along the way, we classify the projective K3 surfaces of zero entropy with infinite automorphism groups and we determine the projective K3 surfaces of Picard number at least five with almost abelian automorphism groups, which gives an answer to a long standing question of Nikulin.
References
- Michela Artebani, Alessandra Sarti, and Shingo Taki, $K3$ surfaces with non-symplectic automorphisms of prime order, Math. Z. 268 (2011), no. 1-2, 507–533. With an appendix by Shigeyuki Kond\B{o}. MR 2805445, DOI 10.1007/s00209-010-0681-x
- W. P. Barth, K. Hulek, C. A. M. Peters, and A. Van de Ven, Compact complex surfaces, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 4, Springer-Verlag, Berlin, 2004.
- Eric Bedford and Kyounghee Kim, Dynamics of (pseudo) automorphisms of 3-space: periodicity versus positive entropy, Publ. Mat. 58 (2014), no. 1, 65–119. MR 3161509
- Richard Borcherds, Automorphism groups of Lorentzian lattices, J. Algebra 111 (1987), no. 1, 133–153. MR 913200, DOI 10.1016/0021-8693(87)90245-6
- Richard E. Borcherds, Lattices like the Leech lattice, J. Algebra 130 (1990), no. 1, 219–234. MR 1045746, DOI 10.1016/0021-8693(90)90110-A
- Richard E. Borcherds, Coxeter groups, Lorentzian lattices, and $K3$ surfaces, Internat. Math. Res. Notices 19 (1998), 1011–1031. MR 1654763, DOI 10.1155/S1073792898000609
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- Simon Brandhorst and Noam D. Elkies, Equations for a K3 Lehmer map, J. Algebraic Geom. 32 (2023), no. 4, 641–675. MR 4652575
- S. Brandhorst and G. Mezzedimi, Borcherds lattices and K3 surfaces of zero entropy, arXiv:2211.09600, 2022.
- Serge Cantat, Dynamique des automorphismes des surfaces projectives complexes, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 10, 901–906 (French, with English and French summaries). MR 1689873, DOI 10.1016/S0764-4442(99)80294-8
- J. H. Conway, The automorphism group of the $26$-dimensional even unimodular Lorentzian lattice, J. Algebra 80 (1983), no. 1, 159–163. MR 690711, DOI 10.1016/0021-8693(83)90025-X
- J. H. Conway and N. J. A. Sloane, Low-dimensional lattices. IV. The mass formula, Proc. Roy. Soc. London Ser. A 419 (1988), no. 1857, 259–286. MR 965484
- J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, 3rd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1999. With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 1662447, DOI 10.1007/978-1-4757-6568-7
- Tien-Cuong Dinh, Keiji Oguiso, and Xun Yu, Smooth complex projective rational surfaces with infinitely many real forms, J. Reine Angew. Math. 794 (2023), 267–280. MR 4529417, DOI 10.1515/crelle-2022-0087
- Tien-Cuong Dinh and Nessim Sibony, Une borne supérieure pour l’entropie topologique d’une application rationnelle, Ann. of Math. (2) 161 (2005), no. 3, 1637–1644 (French, with English summary). MR 2180409, DOI 10.4007/annals.2005.161.1637
- Igor Dolgachev and Jonghae Keum, Birational automorphisms of quartic Hessian surfaces, Trans. Amer. Math. Soc. 354 (2002), no. 8, 3031–3057. MR 1897389, DOI 10.1090/S0002-9947-02-03011-8
- Hélène Esnault and Vasudevan Srinivas, Algebraic versus topological entropy for surfaces over finite fields, Osaka J. Math. 50 (2013), no. 3, 827–846. MR 3129006
- Larry J. Gerstein, Basic quadratic forms, Graduate Studies in Mathematics, vol. 90, American Mathematical Society, Providence, RI, 2008. MR 2396246, DOI 10.1090/gsm/090
- Kenji Hashimoto, JongHae Keum, and Kwangwoo Lee, K3 surfaces with Picard number 2, Salem polynomials and Pell equation, J. Pure Appl. Algebra 224 (2020), no. 1, 432–443. MR 3986430, DOI 10.1016/j.jpaa.2019.05.015
- Daniel Huybrechts, Lectures on K3 surfaces, Cambridge Studies in Advanced Mathematics, vol. 158, Cambridge University Press, Cambridge, 2016. MR 3586372, DOI 10.1017/CBO9781316594193
- JongHae Keum, A note on elliptic $K3$ surfaces, Trans. Amer. Math. Soc. 352 (2000), no. 5, 2077–2086. MR 1707196, DOI 10.1090/S0002-9947-99-02587-8
- Jonghae Keum and Shigeyuki Kond\B{o}, The automorphism groups of Kummer surfaces associated with the product of two elliptic curves, Trans. Amer. Math. Soc. 353 (2001), no. 4, 1469–1487. MR 1806732, DOI 10.1090/S0002-9947-00-02631-3
- Shigeyuki Kond\B{o}, Algebraic $K3$ surfaces with finite automorphism groups, Nagoya Math. J. 116 (1989), 1–15. MR 1029967, DOI 10.1017/S0027763000001653
- Shigeyuki Kond\B{o}, The automorphism group of a generic Jacobian Kummer surface, J. Algebraic Geom. 7 (1998), no. 3, 589–609. MR 1618132
- David Lorch and Markus Kirschmer, Single-class genera of positive integral lattices, LMS J. Comput. Math. 16 (2013), 172–186. MR 3091733, DOI 10.1112/S1461157013000107
- Curtis T. McMullen, Dynamics on $K3$ surfaces: Salem numbers and Siegel disks, J. Reine Angew. Math. 545 (2002), 201–233. MR 1896103, DOI 10.1515/crll.2002.036
- Curtis T. McMullen, Dynamics on blowups of the projective plane, Publ. Math. Inst. Hautes Études Sci. 105 (2007), 49–89. MR 2354205, DOI 10.1007/s10240-007-0004-x
- Curtis T. McMullen, K3 surfaces, entropy and glue, J. Reine Angew. Math. 658 (2011), 1–25. MR 2831510, DOI 10.1515/CRELLE.2011.048
- Curtis T. McMullen, Salem number/Coxeter group/K3 surface package, Vol. 1, Harvard Dataverse, 2015., DOI 10.7910/DVN/29211
- Curtis T. McMullen, Automorphisms of projective K3 surfaces with minimum entropy, Invent. Math. 203 (2016), no. 1, 179–215. MR 3437870, DOI 10.1007/s00222-015-0590-z
- Giacomo Mezzedimi, K3 surfaces of zero entropy admitting an elliptic fibration with only irreducible fibers, J. Algebra 587 (2021), 344–389. MR 4304793, DOI 10.1016/j.jalgebra.2021.08.005
- Shigeru Mukai, Finite groups of automorphisms of $K3$ surfaces and the Mathieu group, Invent. Math. 94 (1988), no. 1, 183–221. MR 958597, DOI 10.1007/BF01394352
- V. V. Nikulin, Quotient-groups of groups of automorphisms of hyperbolic forms of subgroups generated by $2$-reflections, Dokl. Akad. Nauk SSSR 248 (1979), no. 6, 1307–1309 (Russian). MR 556762
- V. V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 111–177, 238 (Russian). MR 525944
- V. V. Nikulin, Quotient-groups of groups of automorphisms of hyperbolic forms by subgroups generated by $2$-reflections. Algebro-geometric applications, Current problems in mathematics, Vol. 18, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1981, pp. 3–114 (Russian). MR 633160
- V. V. Nikulin, Surfaces of type K3 with a finite automorphism group and a Picard group of rank three, Proc. Steklov Institute of Math. Issue 3 (1985), 131–155.
- V. V. Nikulin, Reflection groups in Lobachevskiĭ spaces and an identity for the denominator of Lorentzian Kac-Moody algebras, Izv. Ross. Akad. Nauk Ser. Mat. 60 (1996), no. 2, 73–106 (Russian, with Russian summary); English transl., Izv. Math. 60 (1996), no. 2, 305–334. MR 1399419, DOI 10.1070/IM1996v060n02ABEH000072
- V. V. Nikulin, $K3$ surfaces with interesting groups of automorphisms, J. Math. Sci. (New York) 95 (1999), no. 1, 2028–2048. Algebraic geometry, 8. MR 1708598, DOI 10.1007/BF02169159
- Viacheslav V. Nikulin, Elliptic fibrations on $\rm K3$ surfaces, Proc. Edinb. Math. Soc. (2) 57 (2014), no. 1, 253–267. MR 3165023, DOI 10.1017/S0013091513000953
- Viacheslav V. Nikulin, Some examples of K3 surfaces with infinite automorphism group which preserves an elliptic pencil, Math. Notes 108 (2020), no. 3-4, 542–549. MR 4170906, DOI 10.1134/s0001434620090266
- Keiji Oguiso, Automorphisms of hyperkähler manifolds in the view of topological entropy, Algebraic geometry, Contemp. Math., vol. 422, Amer. Math. Soc., Providence, RI, 2007, pp. 173–185. MR 2296437, DOI 10.1090/conm/422/08060
- Keiji Oguiso, The third smallest Salem number in automorphisms of $K3$ surfaces, Algebraic geometry in East Asia—Seoul 2008, Adv. Stud. Pure Math., vol. 60, Math. Soc. Japan, Tokyo, 2010, pp. 331–360. MR 2761934, DOI 10.2969/aspm/06010331
- Keiji Oguiso, Salem polynomials and the bimeromorphic automorphism group of a hyper-Kähler manifold [translation of MR2301428], Selected papers on analysis and differential equations, Amer. Math. Soc. Transl. Ser. 2, vol. 230, Amer. Math. Soc., Providence, RI, 2010, pp. 201–227. MR 2759464, DOI 10.1090/trans2/230/09
- Keiji Oguiso, Some aspects of explicit birational geometry inspired by complex dynamics, Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. II, Kyung Moon Sa, Seoul, 2014, pp. 695–721. MR 3728634
- Keiji Oguiso, Free automorphisms of positive entropy on smooth Kähler surfaces, Algebraic geometry in east Asia—Taipei 2011, Adv. Stud. Pure Math., vol. 65, Math. Soc. Japan, Tokyo, 2015, pp. 187–199. MR 3380789, DOI 10.2969/aspm/06510187
- K. Oguiso and X. Yu, Coble’s question and complex dynamics of inertia groups on surfaces, arXiv:1904.00175, 2019.
- Keiji Oguiso and Xun Yu, Minimum positive entropy of complex Enriques surface automorphisms, Duke Math. J. 169 (2020), no. 18, 3565–3606. MR 4181033, DOI 10.1215/00127094-2020-0033
- I. I. Pjateckiĭ-Šapiro and I. R. Šafarevič, Torelli’s theorem for algebraic surfaces of type $\textrm {K}3$, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 530–572 (Russian). MR 284440
- Xavier Roulleau, An atlas of K3 surfaces with finite automorphism group, Épijournal Géom. Algébrique 6 (2022), Art. 19, 95. MR 4526267
- Ichiro Shimada, An algorithm to compute automorphism groups of $K3$ surfaces and an application to singular $K3$ surfaces, Int. Math. Res. Not. IMRN 22 (2015), 11961–12014. MR 3456710, DOI 10.1093/imrn/rnv006
- T. Shioda and H. Inose, On singular $K3$ surfaces, Complex analysis and algebraic geometry, Iwanami Shoten Publishers, Tokyo, 1977, pp. 119–136. MR 441982
- The PARI Group, PARI/GP version 2.7.5, Bordeaux, 2015, http://pari.math.u-bordeaux.fr/.
- The Sage Developers, SageMath, the Sage mathematics software system (version 7.2), 2016, https://www.sagemath.org.
- È. B. Vinberg, Some arithmetical discrete groups in Lobačevskiĭ spaces, Discrete subgroups of Lie groups and applications to moduli (Internat. Colloq., Bombay, 1973) Tata Inst. Fundam. Res. Stud. Math., No. 7, Published for the Tata Institute of Fundamental Research, Bombay by Oxford University Press, Bombay, 1975, pp. 323–348. MR 422505
- È. B. Vinberg, The two most algebraic $K3$ surfaces, Math. Ann. 265 (1983), no. 1, 1–21. MR 719348, DOI 10.1007/BF01456933
- È. B. Vinberg, Classification of 2-reflective hyperbolic lattices of rank 4, Tr. Mosk. Mat. Obs. 68 (2007), 44–76 (Russian, with Russian summary); English transl., Trans. Moscow Math. Soc. (2007), 39–66. MR 2429266, DOI 10.1090/s0077-1554-07-00160-4
- John Voight, Quadratic forms that represent almost the same primes, Math. Comp. 76 (2007), no. 259, 1589–1617. MR 2299790, DOI 10.1090/S0025-5718-07-01976-X
- G. L. Watson, The class-number of a positive quadratic form, Proc. London Math. Soc. (3) 13 (1963), 549–576. MR 150104, DOI 10.1112/plms/s3-13.1.549
- Wolfram Research, Inc., Mathematica (version 10.0), Champaign, Illinois, 2014.
- Xun Yu, Elliptic fibrations on K3 surfaces and Salem numbers of maximal degree, J. Math. Soc. Japan 70 (2018), no. 3, 1151–1163. MR 3830803, DOI 10.2969/jmsj/75907590
- X. Yu, K3 surface entropy and automorphism groups, arXiv:2211.07526, 2022.
References
- Michela Artebani, Alessandra Sarti, and Shingo Taki, $K3$ surfaces with non-symplectic automorphisms of prime order, Math. Z. 268 (2011), no. 1-2, 507–533. With an appendix by Shigeyuki Kondō. MR 2805445, DOI 10.1007/s00209-010-0681-x
- W. P. Barth, K. Hulek, C. A. M. Peters, and A. Van de Ven, Compact complex surfaces, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 4, Springer-Verlag, Berlin, 2004.
- Eric Bedford and Kyounghee Kim, Dynamics of (pseudo) automorphisms of 3-space: periodicity versus positive entropy, Publ. Mat. 58 (2014), no. 1, 65–119. MR 3161509
- Richard Borcherds, Automorphism groups of Lorentzian lattices, J. Algebra 111 (1987), no. 1, 133–153. MR 913200, DOI 10.1016/0021-8693(87)90245-6
- Richard E. Borcherds, Lattices like the Leech lattice, J. Algebra 130 (1990), no. 1, 219–234. MR 1045746, DOI 10.1016/0021-8693(90)90110-A
- Richard E. Borcherds, Coxeter groups, Lorentzian lattices, and $K3$ surfaces, Internat. Math. Res. Notices 19 (1998), 1011–1031. MR 1654763, DOI 10.1155/S1073792898000609
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- Simon Brandhorst and Noam D. Elkies, Equations for a K3 Lehmer map, J. Algebraic Geom. 32 (2023), no. 4, 641–675. MR 4652575
- S. Brandhorst and G. Mezzedimi, Borcherds lattices and K3 surfaces of zero entropy, arXiv:2211.09600, 2022.
- Serge Cantat, Dynamique des automorphismes des surfaces projectives complexes, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 10, 901–906 (French, with English and French summaries). MR 1689873, DOI 10.1016/S0764-4442(99)80294-8
- J. H. Conway, The automorphism group of the $26$-dimensional even unimodular Lorentzian lattice, J. Algebra 80 (1983), no. 1, 159–163. MR 690711, DOI 10.1016/0021-8693(83)90025-X
- J. H. Conway and N. J. A. Sloane, Low-dimensional lattices. IV. The mass formula, Proc. Roy. Soc. London Ser. A 419 (1988), no. 1857, 259–286. MR 965484
- J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, 3rd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1999. With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 1662447, DOI 10.1007/978-1-4757-6568-7
- Tien-Cuong Dinh, Keiji Oguiso, and Xun Yu, Smooth complex projective rational surfaces with infinitely many real forms, J. Reine Angew. Math. 794 (2023), 267–280. MR 4529417, DOI 10.1515/crelle-2022-0087
- Tien-Cuong Dinh and Nessim Sibony, Une borne supérieure pour l’entropie topologique d’une application rationnelle, Ann. of Math. (2) 161 (2005), no. 3, 1637–1644 (French, with English summary). MR 2180409, DOI 10.4007/annals.2005.161.1637
- Igor Dolgachev and Jonghae Keum, Birational automorphisms of quartic Hessian surfaces, Trans. Amer. Math. Soc. 354 (2002), no. 8, 3031–3057. MR 1897389, DOI 10.1090/S0002-9947-02-03011-8
- Hélène Esnault and Vasudevan Srinivas, Algebraic versus topological entropy for surfaces over finite fields, Osaka J. Math. 50 (2013), no. 3, 827–846. MR 3129006
- Larry J. Gerstein, Basic quadratic forms, Graduate Studies in Mathematics, vol. 90, American Mathematical Society, Providence, RI, 2008. MR 2396246, DOI 10.1090/gsm/090
- Kenji Hashimoto, JongHae Keum, and Kwangwoo Lee, K3 surfaces with Picard number 2, Salem polynomials and Pell equation, J. Pure Appl. Algebra 224 (2020), no. 1, 432–443. MR 3986430, DOI 10.1016/j.jpaa.2019.05.015
- Daniel Huybrechts, Lectures on K3 surfaces, Cambridge Studies in Advanced Mathematics, vol. 158, Cambridge University Press, Cambridge, 2016. MR 3586372, DOI 10.1017/CBO9781316594193
- JongHae Keum, A note on elliptic $K3$ surfaces, Trans. Amer. Math. Soc. 352 (2000), no. 5, 2077–2086. MR 1707196, DOI 10.1090/S0002-9947-99-02587-8
- Jonghae Keum and Shigeyuki Kondō, The automorphism groups of Kummer surfaces associated with the product of two elliptic curves, Trans. Amer. Math. Soc. 353 (2001), no. 4, 1469–1487. MR 1806732, DOI 10.1090/S0002-9947-00-02631-3
- Shigeyuki Kondō, Algebraic $K3$ surfaces with finite automorphism groups, Nagoya Math. J. 116 (1989), 1–15. MR 1029967, DOI 10.1017/S0027763000001653
- Shigeyuki Kondō, The automorphism group of a generic Jacobian Kummer surface, J. Algebraic Geom. 7 (1998), no. 3, 589–609. MR 1618132
- David Lorch and Markus Kirschmer, Single-class genera of positive integral lattices, LMS J. Comput. Math. 16 (2013), 172–186. MR 3091733, DOI 10.1112/S1461157013000107
- Curtis T. McMullen, Dynamics on $K3$ surfaces: Salem numbers and Siegel disks, J. Reine Angew. Math. 545 (2002), 201–233. MR 1896103, DOI 10.1515/crll.2002.036
- Curtis T. McMullen, Dynamics on blowups of the projective plane, Publ. Math. Inst. Hautes Études Sci. 105 (2007), 49–89. MR 2354205, DOI 10.1007/s10240-007-0004-x
- Curtis T. McMullen, K3 surfaces, entropy and glue, J. Reine Angew. Math. 658 (2011), 1–25. MR 2831510, DOI 10.1515/CRELLE.2011.048
- Curtis T. McMullen, Salem number/Coxeter group/K3 surface package, Vol. 1, Harvard Dataverse, 2015., DOI 10.7910/DVN/29211
- Curtis T. McMullen, Automorphisms of projective K3 surfaces with minimum entropy, Invent. Math. 203 (2016), no. 1, 179–215. MR 3437870, DOI 10.1007/s00222-015-0590-z
- Giacomo Mezzedimi, K3 surfaces of zero entropy admitting an elliptic fibration with only irreducible fibers, J. Algebra 587 (2021), 344–389. MR 4304793, DOI 10.1016/j.jalgebra.2021.08.005
- Shigeru Mukai, Finite groups of automorphisms of $K3$ surfaces and the Mathieu group, Invent. Math. 94 (1988), no. 1, 183–221. MR 958597, DOI 10.1007/BF01394352
- V. V. Nikulin, Quotient-groups of groups of automorphisms of hyperbolic forms of subgroups generated by $2$-reflections, Dokl. Akad. Nauk SSSR 248 (1979), no. 6, 1307–1309 (Russian). MR 556762
- V. V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 111–177, 238 (Russian). MR 525944
- V. V. Nikulin, Quotient-groups of groups of automorphisms of hyperbolic forms by subgroups generated by $2$-reflections. Algebro-geometric applications, Current problems in mathematics, Vol. 18, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1981, pp. 3–114 (Russian). MR 633160
- V. V. Nikulin, Surfaces of type K3 with a finite automorphism group and a Picard group of rank three, Proc. Steklov Institute of Math. Issue 3 (1985), 131–155.
- V. V. Nikulin, Reflection groups in Lobachevskiĭ spaces and an identity for the denominator of Lorentzian Kac-Moody algebras, Izv. Ross. Akad. Nauk Ser. Mat. 60 (1996), no. 2, 73–106 (Russian, with Russian summary); English transl., Izv. Math. 60 (1996), no. 2, 305–334. MR 1399419, DOI 10.1070/IM1996v060n02ABEH000072
- V. V. Nikulin, $K3$ surfaces with interesting groups of automorphisms, J. Math. Sci. (New York) 95 (1999), no. 1, 2028–2048. Algebraic geometry, 8. MR 1708598, DOI 10.1007/BF02169159
- Viacheslav V. Nikulin, Elliptic fibrations on $\mathrm {K}3$ surfaces, Proc. Edinb. Math. Soc. (2) 57 (2014), no. 1, 253–267. MR 3165023, DOI 10.1017/S0013091513000953
- Viacheslav V. Nikulin, Some examples of K3 surfaces with infinite automorphism group which preserves an elliptic pencil, Math. Notes 108 (2020), no. 3-4, 542–549. MR 4170906, DOI 10.1134/s0001434620090266
- Keiji Oguiso, Automorphisms of hyperkähler manifolds in the view of topological entropy, Algebraic geometry, Contemp. Math., vol. 422, Amer. Math. Soc., Providence, RI, 2007, pp. 173–185. MR 2296437, DOI 10.1090/conm/422/08060
- Keiji Oguiso, The third smallest Salem number in automorphisms of $K3$ surfaces, Algebraic geometry in East Asia—Seoul 2008, Adv. Stud. Pure Math., vol. 60, Math. Soc. Japan, Tokyo, 2010, pp. 331–360. MR 2761934, DOI 10.2969/aspm/06010331
- Keiji Oguiso, Salem polynomials and the bimeromorphic automorphism group of a hyper-Kähler manifold [translation of MR2301428], Selected papers on analysis and differential equations, Amer. Math. Soc. Transl. Ser. 2, vol. 230, Amer. Math. Soc., Providence, RI, 2010, pp. 201–227. MR 2759464, DOI 10.1090/trans2/230/09
- Keiji Oguiso, Some aspects of explicit birational geometry inspired by complex dynamics, Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. II, Kyung Moon Sa, Seoul, 2014, pp. 695–721. MR 3728634
- Keiji Oguiso, Free automorphisms of positive entropy on smooth Kähler surfaces, Algebraic geometry in east Asia—Taipei 2011, Adv. Stud. Pure Math., vol. 65, Math. Soc. Japan, Tokyo, 2015, pp. 187–199. MR 3380789, DOI 10.2969/aspm/06510187
- K. Oguiso and X. Yu, Coble’s question and complex dynamics of inertia groups on surfaces, arXiv:1904.00175, 2019.
- Keiji Oguiso and Xun Yu, Minimum positive entropy of complex Enriques surface automorphisms, Duke Math. J. 169 (2020), no. 18, 3565–3606. MR 4181033, DOI 10.1215/00127094-2020-0033
- I. I. Pjateckiĭ-Šapiro and I. R. Šafarevič, Torelli’s theorem for algebraic surfaces of type $\mathrm {K}3$, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 530–572 (Russian). MR 284440
- Xavier Roulleau, An atlas of K3 surfaces with finite automorphism group, Épijournal Géom. Algébrique 6 (2022), Art. 19, 95. MR 4526267
- Ichiro Shimada, An algorithm to compute automorphism groups of $K3$ surfaces and an application to singular $K3$ surfaces, Int. Math. Res. Not. IMRN 22 (2015), 11961–12014. MR 3456710, DOI 10.1093/imrn/rnv006
- T. Shioda and H. Inose, On singular $K3$ surfaces, Complex analysis and algebraic geometry, Iwanami Shoten Publishers, Tokyo, 1977, pp. 119–136. MR 441982
- The PARI Group, PARI/GP version 2.7.5, Bordeaux, 2015, http://pari.math.u-bordeaux.fr/.
- The Sage Developers, SageMath, the Sage mathematics software system (version 7.2), 2016, https://www.sagemath.org.
- È. B. Vinberg, Some arithmetical discrete groups in Lobačevskiĭ spaces, Discrete subgroups of Lie groups and applications to moduli (Internat. Colloq., Bombay, 1973) Tata Inst. Fundam. Res. Stud. Math., No. 7, Published for the Tata Institute of Fundamental Research, Bombay by Oxford University Press, Bombay, 1975, pp. 323–348. MR 422505
- È. B. Vinberg, The two most algebraic $K3$ surfaces, Math. Ann. 265 (1983), no. 1, 1–21. MR 719348, DOI 10.1007/BF01456933
- È. B. Vinberg, Classification of 2-reflective hyperbolic lattices of rank 4, Tr. Mosk. Mat. Obs. 68 (2007), 44–76 (Russian, with Russian summary); English transl., Trans. Moscow Math. Soc. (2007), 39–66. MR 2429266, DOI 10.1090/s0077-1554-07-00160-4
- John Voight, Quadratic forms that represent almost the same primes, Math. Comp. 76 (2007), no. 259, 1589–1617. MR 2299790, DOI 10.1090/S0025-5718-07-01976-X
- G. L. Watson, The class-number of a positive quadratic form, Proc. London Math. Soc. (3) 13 (1963), 549–576. MR 150104, DOI 10.1112/plms/s3-13.1.549
- Wolfram Research, Inc., Mathematica (version 10.0), Champaign, Illinois, 2014.
- Xun Yu, Elliptic fibrations on K3 surfaces and Salem numbers of maximal degree, J. Math. Soc. Japan 70 (2018), no. 3, 1151–1163. MR 3830803, DOI 10.2969/jmsj/75907590
- X. Yu, K3 surface entropy and automorphism groups, arXiv:2211.07526, 2022.
Additional Information
Xun Yu
Affiliation:
Center for Applied Mathematics, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, Peoples’ Republic of China
MR Author ID:
1178446
Email:
xunyu@tju.edu.cn
Received by editor(s):
November 16, 2022
Received by editor(s) in revised form:
September 9, 2023
Published electronically:
March 27, 2024
Additional Notes:
This work was partially supported by the National Natural Science Foundation of China (No. 12071337, No. 11701413, No. 11831013, No. 11921001).
Article copyright:
© Copyright 2024
University Press, Inc.