Atomic objects on hyper-Kähler manifolds
Author:
Thorsten Beckmann
Journal:
J. Algebraic Geom.
DOI:
https://doi.org/10.1090/jag/830
Published electronically:
April 19, 2024
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We introduce and study the notion of atomic sheaves and complexes on higher-dimensional hyper-Kähler manifolds and show that they share many of the intriguing properties of simple sheaves on K3 surfaces. For example, we prove formality of the dg algebra of derived endomorphisms for stable atomic bundles. We further demonstrate the characteristics of atomic objects by studying atomic Lagrangian submanifolds. In the appendix, we prove nonexistence results for spherical objects on hyper-Kähler manifolds.
References
- Nicolas Addington, New derived symmetries of some hyperkähler varieties, Algebr. Geom. 3 (2016), no. 2, 223–260. MR 3477955, DOI 10.14231/AG-2016-011
- Nicolas Addington, Will Donovan, and Ciaran Meachan, Moduli spaces of torsion sheaves on K3 surfaces and derived equivalences, J. Lond. Math. Soc. (2) 93 (2016), no. 3, 846–865. MR 3509967, DOI 10.1112/jlms/jdw022
- E. Arbarello and G. Saccà, Singularities of moduli spaces of sheaves on K3 surfaces and Nakajima quiver varieties, Adv. Math. 329 (2018), 649–703. MR 3783425, DOI 10.1016/j.aim.2018.02.003
- Arend Bayer and Tom Bridgeland, Derived automorphism groups of K3 surfaces of Picard rank 1, Duke Math. J. 166 (2017), no. 1, 75–124. MR 3592689, DOI 10.1215/00127094-3674332
- Arend Bayer and Emanuele Macrì, MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations, Invent. Math. 198 (2014), no. 3, 505–590. MR 3279532, DOI 10.1007/s00222-014-0501-8
- Thorsten Beckmann, Derived categories of hyper-Kähler manifolds: extended Mukai vector and integral structure, Compos. Math. 159 (2023), no. 1, 109–152. MR 4543656, DOI 10.1112/S0010437X22007849
- T. Beckmann and J. Song, Second Chern class and Fujiki constants of hyperkähler manifolds, arXiv:2201.07767v2 (2022).
- F. A. Bogomolov, On the cohomology ring of a simple hyper-Kähler manifold (on the results of Verbitsky), Geom. Funct. Anal. 6 (1996), no. 4, 612–618. MR 1406665, DOI 10.1007/BF02247113
- Nero Budur and Ziyu Zhang, Formality conjecture for K3 surfaces, Compos. Math. 155 (2019), no. 5, 902–911. MR 3942159, DOI 10.1112/s0010437x19007206
- Damien Calaque, Carlo A. Rossi, and Michel Van den Bergh, Căldăraru’s conjecture and Tsygan’s formality, Ann. of Math. (2) 176 (2012), no. 2, 865–923. MR 2950766, DOI 10.4007/annals.2012.176.2.4
- Andrei Căldăraru, The Mukai pairing. II. The Hochschild-Kostant-Rosenberg isomorphism, Adv. Math. 194 (2005), no. 1, 34–66. MR 2141853, DOI 10.1016/j.aim.2004.05.012
- A. Căldăraru, The Mukai pairing, I: the Hochschild structure, arXiv:math/0308079 (2003).
- Andrei Căldăraru and Simon Willerton, The Mukai pairing. I. A categorical approach, New York J. Math. 16 (2010), 61–98. MR 2657369
- Andrea D’Agnolo and Pierre Schapira, Quantization of complex Lagrangian submanifolds, Adv. Math. 213 (2007), no. 1, 358–379. MR 2331247, DOI 10.1016/j.aim.2006.12.009
- Andrea Ferretti, The Chow ring of double EPW sextics, Rend. Mat. Appl. (7) 31 (2011), no. 3-4, 69–217. MR 2952096
- Akira Fujiki, On the de Rham cohomology group of a compact Kähler symplectic manifold, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 105–165. MR 946237, DOI 10.2969/aspm/01010105
- William M. Goldman and John J. Millson, The homotopy invariance of the Kuranishi space, Illinois J. Math. 34 (1990), no. 2, 337–367. MR 1046568
- Mark Green, Yoon-Joo Kim, Radu Laza, and Colleen Robles, The LLV decomposition of hyper-Kähler cohomology (the known cases and the general conjectural behavior), Math. Ann. 382 (2022), no. 3-4, 1517–1590. MR 4403229, DOI 10.1007/s00208-021-02238-y
- V. Gritsenko, K. Hulek, and G. K. Sankaran, Abelianisation of orthogonal groups and the fundamental group of modular varieties, J. Algebra 322 (2009), no. 2, 463–478. MR 2529099, DOI 10.1016/j.jalgebra.2009.01.037
- M. Gross, D. Huybrechts, and D. Joyce, Calabi-Yau manifolds and related geometries, Universitext, Springer-Verlag, Berlin, 2003. Lectures from the Summer School held in Nordfjordeid, June 2001. MR 1963559, DOI 10.1007/978-3-642-19004-9
- Daniel Guan, On the Betti numbers of irreducible compact hyperkähler manifolds of complex dimension four, Math. Res. Lett. 8 (2001), no. 5-6, 663–669. MR 1879810, DOI 10.4310/MRL.2001.v8.n5.a8
- Andreas Hochenegger and Andreas Krug, Formality of $\Bbb P$-objects, Compos. Math. 155 (2019), no. 5, 973–994. MR 3946281, DOI 10.1112/s0010437x19007218
- Shengyuan Huang, A note on a question of Markman, J. Pure Appl. Algebra 225 (2021), no. 9, Paper No. 106673, 8. MR 4200811, DOI 10.1016/j.jpaa.2021.106673
- D. Huybrechts, Fourier-Mukai transforms in algebraic geometry, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2006. MR 2244106, DOI 10.1093/acprof:oso/9780199296866.001.0001
- D. Huybrechts and M. Mauri, Lagrangian fibrations, Milan J. Math. 90 (2022), no. 2, 459–483. MR 4516500, DOI 10.1007/s00032-022-00349-y
- Daniel Huybrechts and Marc Nieper-Wisskirchen, Remarks on derived equivalences of Ricci-flat manifolds, Math. Z. 267 (2011), no. 3-4, 939–963. MR 2776067, DOI 10.1007/s00209-009-0655-z
- Daniel Huybrechts and Stefan Schröer, The Brauer group of analytic $K3$ surfaces, Int. Math. Res. Not. 50 (2003), 2687–2698. MR 2017247, DOI 10.1155/S1073792803131637
- Daniel Huybrechts and Paolo Stellari, Equivalences of twisted $K3$ surfaces, Math. Ann. 332 (2005), no. 4, 901–936. MR 2179782, DOI 10.1007/s00208-005-0662-2
- Daniel Huybrechts and Richard Thomas, $\Bbb P$-objects and autoequivalences of derived categories, Math. Res. Lett. 13 (2006), no. 1, 87–98. MR 2200048, DOI 10.4310/MRL.2006.v13.n1.a7
- Chen Jiang, Positivity of Riemann-Roch polynomials and Todd classes of hyperkähler manifolds, J. Algebraic Geom. 32 (2023), no. 2, 239–269. MR 4554423
- D. Kaledin, Some remarks on formality in families, Mosc. Math. J. 7 (2007), no. 4, 643–652, 766 (English, with English and Russian summaries). MR 2372207, DOI 10.17323/1609-4514-2007-7-4-643-652
- D. Kaledin and M. Lehn, Local structure of hyperkähler singularities in O’Grady’s examples, Mosc. Math. J. 7 (2007), no. 4, 653–672, 766-767 (English, with English and Russian summaries). MR 2372208, DOI 10.17323/1609-4514-2007-7-4-653-672
- D. Kaledin, M. Lehn, and Ch. Sorger, Singular symplectic moduli spaces, Invent. Math. 164 (2006), no. 3, 591–614. MR 2221132, DOI 10.1007/s00222-005-0484-6
- D. Kaledin and M. Verbitsky, Non-Hermitian Yang-Mills connections, Selecta Math. (N.S.) 4 (1998), no. 2, 279–320. MR 1669956, DOI 10.1007/s000290050033
- Eduard Looijenga and Valery A. Lunts, A Lie algebra attached to a projective variety, Invent. Math. 129 (1997), no. 2, 361–412. MR 1465328, DOI 10.1007/s002220050166
- Eyal Markman, On the monodromy of moduli spaces of sheaves on $K3$ surfaces, J. Algebraic Geom. 17 (2008), no. 1, 29–99. MR 2357680, DOI 10.1090/S1056-3911-07-00457-2
- E. Markman, Stable vector bundles on a hyper-Kähler manifold with a rank 1 obstruction map are modular, arXiv:2107.13991v4 (2022).
- B. Mladenov, Degeneration of spectral sequences and complex Lagrangian submanifolds, arXiv:1907.04742v2 (2020).
- Borislav Mladenov, Formality of differential graded algebras and complex Lagrangian submanifolds, Selecta Math. (N.S.) 30 (2024), no. 1, Paper No. 8, 42. MR 4678893, DOI 10.1007/s00029-023-00894-3
- S. Mukai, On the moduli space of bundles on $K3$ surfaces. I, Vector bundles on algebraic varieties (Bombay, 1984) Tata Inst. Fund. Res. Stud. Math., vol. 11, Tata Inst. Fund. Res., Bombay, 1987, pp. 341–413. MR 893604
- Kieran G. O’Grady, Modular sheaves on hyperkähler varieties, Algebr. Geom. 9 (2022), no. 1, 1–38. MR 4371547, DOI 10.14231/ag-2022-001
- Edoardo Sernesi, Deformations of algebraic schemes, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 334, Springer-Verlag, Berlin, 2006. MR 2247603
- Junliang Shen and Qizheng Yin, Topology of Lagrangian fibrations and Hodge theory of hyper-Kähler manifolds, Duke Math. J. 171 (2022), no. 1, 209–241. With Appendix B by Claire Voisin. MR 4366204, DOI 10.1215/00127094-2021-0010
- Lenny Taelman, Derived equivalences of hyperkähler varieties, Geom. Topol. 27 (2023), no. 7, 2649–2693. MR 4645484, DOI 10.2140/gt.2023.27.2649
- Yukinobu Toda, Deformations and Fourier-Mukai transforms, J. Differential Geom. 81 (2009), no. 1, 197–224. MR 2477894
- M. Verbitsky, Cohomology of compact hyper-Kähler manifolds and its applications, Geom. Funct. Anal. 6 (1996), no. 4, 601–611. MR 1406664, DOI 10.1007/BF02247112
- Mikhail Verbitsky, Hyperholomorphic bundles over a hyper-Kähler manifold, J. Algebraic Geom. 5 (1996), no. 4, 633–669. MR 1486984
- Misha Verbitsky, Mirror symmetry for hyper-Kähler manifolds, Mirror symmetry, III (Montreal, PQ, 1995) AMS/IP Stud. Adv. Math., vol. 10, Amer. Math. Soc., Providence, RI, 1999, pp. 115–156. MR 1673084, DOI 10.1090/amsip/010/04
- Misha Verbitsky, Coherent sheaves on general $K3$ surfaces and tori, Pure Appl. Math. Q. 4 (2008), no. 3, Special Issue: In honor of Fedor Bogomolov., 651–714. MR 2435840, DOI 10.4310/PAMQ.2008.v4.n3.a3
- Claire Voisin, Sur la stabilité des sous-variétés lagrangiennes des variétés symplectiques holomorphes, Complex projective geometry (Trieste, 1989/Bergen, 1989) London Math. Soc. Lecture Note Ser., vol. 179, Cambridge Univ. Press, Cambridge, 1992, pp. 294–303 (French). MR 1201391, DOI 10.1017/CBO9780511662652.022
- Ziyu Zhang, A note on formality and singularities of moduli spaces, Mosc. Math. J. 12 (2012), no. 4, 863–879, 885 (English, with English and Russian summaries). MR 3076859, DOI 10.17323/1609-4514-2012-12-4-863-879
References
- Nicolas Addington, New derived symmetries of some hyperkähler varieties, Algebr. Geom. 3 (2016), no. 2, 223–260. MR 3477955, DOI 10.14231/AG-2016-011
- Nicolas Addington, Will Donovan, and Ciaran Meachan, Moduli spaces of torsion sheaves on K3 surfaces and derived equivalences, J. Lond. Math. Soc. (2) 93 (2016), no. 3, 846–865. MR 3509967, DOI 10.1112/jlms/jdw022
- E. Arbarello and G. Saccà, Singularities of moduli spaces of sheaves on K3 surfaces and Nakajima quiver varieties, Adv. Math. 329 (2018), 649–703. MR 3783425, DOI 10.1016/j.aim.2018.02.003
- Arend Bayer and Tom Bridgeland, Derived automorphism groups of K3 surfaces of Picard rank 1, Duke Math. J. 166 (2017), no. 1, 75–124. MR 3592689, DOI 10.1215/00127094-3674332
- Arend Bayer and Emanuele Macrì, MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations, Invent. Math. 198 (2014), no. 3, 505–590. MR 3279532, DOI 10.1007/s00222-014-0501-8
- Thorsten Beckmann, Derived categories of hyper-Kähler manifolds: extended Mukai vector and integral structure, Compos. Math. 159 (2023), no. 1, 109–152. MR 4543656, DOI 10.1112/S0010437X22007849
- T. Beckmann and J. Song, Second Chern class and Fujiki constants of hyperkähler manifolds, arXiv:2201.07767v2 (2022).
- F. A. Bogomolov, On the cohomology ring of a simple hyper-Kähler manifold (on the results of Verbitsky), Geom. Funct. Anal. 6 (1996), no. 4, 612–618. MR 1406665, DOI 10.1007/BF02247113
- Nero Budur and Ziyu Zhang, Formality conjecture for K3 surfaces, Compos. Math. 155 (2019), no. 5, 902–911. MR 3942159, DOI 10.1112/s0010437x19007206
- Damien Calaque, Carlo A. Rossi, and Michel Van den Bergh, Căldăraru’s conjecture and Tsygan’s formality, Ann. of Math. (2) 176 (2012), no. 2, 865–923. MR 2950766, DOI 10.4007/annals.2012.176.2.4
- Andrei Căldăraru, The Mukai pairing. II. The Hochschild-Kostant-Rosenberg isomorphism, Adv. Math. 194 (2005), no. 1, 34–66. MR 2141853, DOI 10.1016/j.aim.2004.05.012
- A. Căldăraru, The Mukai pairing, I: the Hochschild structure, arXiv:math/0308079 (2003).
- Andrei Căldăraru and Simon Willerton, The Mukai pairing. I. A categorical approach, New York J. Math. 16 (2010), 61–98. MR 2657369
- Andrea D’Agnolo and Pierre Schapira, Quantization of complex Lagrangian submanifolds, Adv. Math. 213 (2007), no. 1, 358–379. MR 2331247, DOI 10.1016/j.aim.2006.12.009
- Andrea Ferretti, The Chow ring of double EPW sextics, Rend. Mat. Appl. (7) 31 (2011), no. 3-4, 69–217. MR 2952096
- Akira Fujiki, On the de Rham cohomology group of a compact Kähler symplectic manifold, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 105–165. MR 946237, DOI 10.2969/aspm/01010105
- William M. Goldman and John J. Millson, The homotopy invariance of the Kuranishi space, Illinois J. Math. 34 (1990), no. 2, 337–367. MR 1046568
- Mark Green, Yoon-Joo Kim, Radu Laza, and Colleen Robles, The LLV decomposition of hyper-Kähler cohomology (the known cases and the general conjectural behavior), Math. Ann. 382 (2022), no. 3-4, 1517–1590. MR 4403229, DOI 10.1007/s00208-021-02238-y
- V. Gritsenko, K. Hulek, and G. K. Sankaran, Abelianisation of orthogonal groups and the fundamental group of modular varieties, J. Algebra 322 (2009), no. 2, 463–478. MR 2529099, DOI 10.1016/j.jalgebra.2009.01.037
- M. Gross, D. Huybrechts, and D. Joyce, Calabi-Yau manifolds and related geometries, Universitext, Springer-Verlag, Berlin, 2003. Lectures from the Summer School held in Nordfjordeid, June 2001. MR 1963559, DOI 10.1007/978-3-642-19004-9
- Daniel Guan, On the Betti numbers of irreducible compact hyperkähler manifolds of complex dimension four, Math. Res. Lett. 8 (2001), no. 5-6, 663–669. MR 1879810, DOI 10.4310/MRL.2001.v8.n5.a8
- Andreas Hochenegger and Andreas Krug, Formality of $\mathbb {P}$-objects, Compos. Math. 155 (2019), no. 5, 973–994. MR 3946281, DOI 10.1112/s0010437x19007218
- Shengyuan Huang, A note on a question of Markman, J. Pure Appl. Algebra 225 (2021), no. 9, Paper No. 106673, 8. MR 4200811, DOI 10.1016/j.jpaa.2021.106673
- D. Huybrechts, Fourier-Mukai transforms in algebraic geometry, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2006. MR 2244106, DOI 10.1093/acprof:oso/9780199296866.001.0001
- D. Huybrechts and M. Mauri, Lagrangian fibrations, Milan J. Math. 90 (2022), no. 2, 459–483. MR 4516500, DOI 10.1007/s00032-022-00349-y
- Daniel Huybrechts and Marc Nieper-Wisskirchen, Remarks on derived equivalences of Ricci-flat manifolds, Math. Z. 267 (2011), no. 3-4, 939–963. MR 2776067, DOI 10.1007/s00209-009-0655-z
- Daniel Huybrechts and Stefan Schröer, The Brauer group of analytic $K3$ surfaces, Int. Math. Res. Not. 50 (2003), 2687–2698. MR 2017247, DOI 10.1155/S1073792803131637
- Daniel Huybrechts and Paolo Stellari, Equivalences of twisted $K3$ surfaces, Math. Ann. 332 (2005), no. 4, 901–936. MR 2179782, DOI 10.1007/s00208-005-0662-2
- Daniel Huybrechts and Richard Thomas, $\mathbb {P}$-objects and autoequivalences of derived categories, Math. Res. Lett. 13 (2006), no. 1, 87–98. MR 2200048, DOI 10.4310/MRL.2006.v13.n1.a7
- Chen Jiang, Positivity of Riemann-Roch polynomials and Todd classes of hyperkähler manifolds, J. Algebraic Geom. 32 (2023), no. 2, 239–269. MR 4554423
- D. Kaledin, Some remarks on formality in families, Mosc. Math. J. 7 (2007), no. 4, 643–652, 766 (English, with English and Russian summaries). MR 2372207, DOI 10.17323/1609-4514-2007-7-4-643-652
- D. Kaledin and M. Lehn, Local structure of hyperkähler singularities in O’Grady’s examples, Mosc. Math. J. 7 (2007), no. 4, 653–672, 766-767 (English, with English and Russian summaries). MR 2372208, DOI 10.17323/1609-4514-2007-7-4-653-672
- D. Kaledin, M. Lehn, and Ch. Sorger, Singular symplectic moduli spaces, Invent. Math. 164 (2006), no. 3, 591–614. MR 2221132, DOI 10.1007/s00222-005-0484-6
- D. Kaledin and M. Verbitsky, Non-Hermitian Yang-Mills connections, Selecta Math. (N.S.) 4 (1998), no. 2, 279–320. MR 1669956, DOI 10.1007/s000290050033
- Eduard Looijenga and Valery A. Lunts, A Lie algebra attached to a projective variety, Invent. Math. 129 (1997), no. 2, 361–412. MR 1465328, DOI 10.1007/s002220050166
- Eyal Markman, On the monodromy of moduli spaces of sheaves on $K3$ surfaces, J. Algebraic Geom. 17 (2008), no. 1, 29–99. MR 2357680, DOI 10.1090/S1056-3911-07-00457-2
- E. Markman, Stable vector bundles on a hyper-Kähler manifold with a rank 1 obstruction map are modular, arXiv:2107.13991v4 (2022).
- B. Mladenov, Degeneration of spectral sequences and complex Lagrangian submanifolds, arXiv:1907.04742v2 (2020).
- Borislav Mladenov, Formality of differential graded algebras and complex Lagrangian submanifolds, Selecta Math. (N.S.) 30 (2024), no. 1, Paper No. 8, 42. MR 4678893, DOI 10.1007/s00029-023-00894-3
- S. Mukai, On the moduli space of bundles on $K3$ surfaces. I, Vector bundles on algebraic varieties (Bombay, 1984) Tata Inst. Fund. Res. Stud. Math., vol. 11, Tata Inst. Fund. Res., Bombay, 1987, pp. 341–413. MR 893604
- Kieran G. O’Grady, Modular sheaves on hyperkähler varieties, Algebr. Geom. 9 (2022), no. 1, 1–38. MR 4371547, DOI 10.14231/ag-2022-001
- Edoardo Sernesi, Deformations of algebraic schemes, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 334, Springer-Verlag, Berlin, 2006. MR 2247603
- Junliang Shen and Qizheng Yin, Topology of Lagrangian fibrations and Hodge theory of hyper-Kähler manifolds, Duke Math. J. 171 (2022), no. 1, 209–241. With Appendix B by Claire Voisin. MR 4366204, DOI 10.1215/00127094-2021-0010
- Lenny Taelman, Derived equivalences of hyperkähler varieties, Geom. Topol. 27 (2023), no. 7, 2649–2693. MR 4645484, DOI 10.2140/gt.2023.27.2649
- Yukinobu Toda, Deformations and Fourier-Mukai transforms, J. Differential Geom. 81 (2009), no. 1, 197–224. MR 2477894
- M. Verbitsky, Cohomology of compact hyper-Kähler manifolds and its applications, Geom. Funct. Anal. 6 (1996), no. 4, 601–611. MR 1406664, DOI 10.1007/BF02247112
- Mikhail Verbitsky, Hyperholomorphic bundles over a hyper-Kähler manifold, J. Algebraic Geom. 5 (1996), no. 4, 633–669. MR 1486984
- Misha Verbitsky, Mirror symmetry for hyper-Kähler manifolds, Mirror symmetry, III (Montreal, PQ, 1995) AMS/IP Stud. Adv. Math., vol. 10, Amer. Math. Soc., Providence, RI, 1999, pp. 115–156. MR 1673084, DOI 10.1090/amsip/010/04
- Misha Verbitsky, Coherent sheaves on general $K3$ surfaces and tori, Pure Appl. Math. Q. 4 (2008), no. 3, Special Issue: In honor of Fedor Bogomolov., 651–714. MR 2435840, DOI 10.4310/PAMQ.2008.v4.n3.a3
- Claire Voisin, Sur la stabilité des sous-variétés lagrangiennes des variétés symplectiques holomorphes, Complex projective geometry (Trieste, 1989/Bergen, 1989) London Math. Soc. Lecture Note Ser., vol. 179, Cambridge Univ. Press, Cambridge, 1992, pp. 294–303 (French). MR 1201391, DOI 10.1017/CBO9780511662652.022
- Ziyu Zhang, A note on formality and singularities of moduli spaces, Mosc. Math. J. 12 (2012), no. 4, 863–879, 885 (English, with English and Russian summaries). MR 3076859, DOI 10.17323/1609-4514-2012-12-4-863-879
Additional Information
Thorsten Beckmann
Affiliation:
Max–Planck–Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
MR Author ID:
1395781
Email:
beckmann@math.uni-bonn.de
Received by editor(s):
August 2, 2022
Received by editor(s) in revised form:
November 6, 2023, and December 6, 2023
Published electronically:
April 19, 2024
Additional Notes:
The author was supported by the International Max–Planck Research School on Moduli Spaces of the Max–Planck Society.
Article copyright:
© Copyright 2024
University Press, Inc.