Quotient singularities in the Grothendieck ring of varieties
Authors:
Louis Esser and Federico Scavia
Journal:
J. Algebraic Geom.
DOI:
https://doi.org/10.1090/jag/832
Published electronically:
May 17, 2024
Full-text PDF
Abstract |
References |
Additional Information
Abstract: Let $G$ be a finite group, $X$ be a smooth complex projective variety with a faithful $G$-action, and $Y$ be a resolution of singularities of $X/G$. Larsen and Lunts asked whether $[X/G]-[Y]$ is divisible by $[\mathbb {A}^1]$ in the Grothendieck ring of varieties. We show that the answer is negative if $BG$ is not stably rational and affirmative if $G$ is abelian. The case when $X=Z^n$ for some smooth projective variety $Z$ and $G=S_n$ acts by permutation of the factors is of particular interest. We make progress on it by showing that $[Z^n/S_n]-[Z\langle n\rangle / S_n]$ is divisible by $[\mathbb {A}^1]$, where $Z\langle n\rangle$ is Ulyanov’s polydiagonal compactification of the $n$th configuration space of $Z$.
References
- Dan Abramovich, Jan Denef, and Kalle Karu, Weak toroidalization over non-closed fields, Manuscripta Math. 142 (2013), no. 1-2, 257–271. MR 3081008, DOI 10.1007/s00229-013-0610-5
- Dan Abramovich, Kalle Karu, Kenji Matsuki, and Jarosław Włodarczyk, Torification and factorization of birational maps, J. Amer. Math. Soc. 15 (2002), no. 3, 531–572. MR 1896232, DOI 10.1090/S0894-0347-02-00396-X
- Dan Abramovich and Jianhua Wang, Equivariant resolution of singularities in characteristic $0$, Math. Res. Lett. 4 (1997), no. 2-3, 427–433. MR 1453072, DOI 10.4310/MRL.1997.v4.n3.a11
- F. A. Bogomolov, The Brauer group of quotient spaces of linear representations, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), no. 3, 485–516, 688 (Russian); English transl., Math. USSR-Izv. 30 (1988), no. 3, 455–485. MR 903621, DOI 10.1070/IM1988v030n03ABEH001024
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323, DOI 10.1007/978-1-4612-1700-8
- William Fulton and Robert MacPherson, A compactification of configuration spaces, Ann. of Math. (2) 139 (1994), no. 1, 183–225. MR 1259368, DOI 10.2307/2946631
- Lothar Göttsche, On the motive of the Hilbert scheme of points on a surface, Math. Res. Lett. 8 (2001), no. 5-6, 613–627. MR 1879805, DOI 10.4310/MRL.2001.v8.n5.a3
- A. Grothendieck and M. Demazure, Schémas en groupes, II: Groupes de type multiplicatif, et structure des schémas en groupes généraux, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3), Dirigé par M. Demazure et A. Grothendieck, Lecture Notes in Mathematics, vol. 152, Springer-Verlag, Berlin-New York, 1970, pp. ix+654.
- Akinari Hoshi, Ming-Chang Kang, and Boris E. Kunyavskii, Noether’s problem and unramified Brauer groups, Asian J. Math. 17 (2013), no. 4, 689–713. MR 3152260, DOI 10.4310/AJM.2013.v17.n4.a8
- G. Kempf, Finn Faye Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Mathematics, Vol. 339, Springer-Verlag, Berlin-New York, 1973. MR 335518
- H. W. Lenstra Jr., Rational functions invariant under a finite abelian group, Invent. Math. 25 (1974), 299–325. MR 347788, DOI 10.1007/BF01389732
- D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906
- Michael Larsen and Valery A. Lunts, Motivic measures and stable birational geometry, Mosc. Math. J. 3 (2003), no. 1, 85–95, 259 (English, with English and Russian summaries). MR 1996804, DOI 10.17323/1609-4514-2003-3-1-85-95
- Michael Larsen and Valery A. Lunts, Rationality criteria for motivic zeta functions, Compos. Math. 140 (2004), no. 6, 1537–1560. MR 2098401, DOI 10.1112/S0010437X04000764
- Johannes Nicaise and Evgeny Shinder, The motivic nearby fiber and degeneration of stable rationality, Invent. Math. 217 (2019), no. 2, 377–413. MR 3987174, DOI 10.1007/s00222-019-00869-2
- David J. Saltman, Noether’s problem over an algebraically closed field, Invent. Math. 77 (1984), no. 1, 71–84. MR 751131, DOI 10.1007/BF01389135
- The Stacks Project Authors, Stacks Project, https://stacks.columbia.math.edu, 2022.
- Richard G. Swan, Invariant rational functions and a problem of Steenrod, Invent. Math. 7 (1969), 148–158. MR 244215, DOI 10.1007/BF01389798
- Burt Totaro, Group cohomology and algebraic cycles, Cambridge Tracts in Mathematics, vol. 204, Cambridge University Press, Cambridge, 2014. MR 3185743, DOI 10.1017/CBO9781139059480
- Alexander P. Ulyanov, Polydiagonal compactification of configuration spaces, J. Algebraic Geom. 11 (2002), no. 1, 129–159. MR 1865916, DOI 10.1090/S1056-3911-01-00293-4
- Angelo Vistoli, Grothendieck topologies, fibered categories and descent theory, Fundamental algebraic geometry, Math. Surveys Monogr., vol. 123, Amer. Math. Soc., Providence, RI, 2005, pp. 1–104. MR 2223406
- V. E. Voskresenskiĭ, On the question of the structure of the subfield of invariants of a cyclic group of automorphisms of the field $Q(x_{1},\cdots ,\,x_{n})$, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 366–375 (Russian). MR 274427
- Jarosław Włodarczyk, Functorial resolution except for toroidal locus. Toroidal compactification, Adv. Math. 407 (2022), Paper No. 108551, 103. MR 4453596, DOI 10.1016/j.aim.2022.108551
References
- Dan Abramovich, Jan Denef, and Kalle Karu, Weak toroidalization over non-closed fields, Manuscripta Math. 142 (2013), no. 1-2, 257–271. MR 3081008, DOI 10.1007/s00229-013-0610-5
- Dan Abramovich, Kalle Karu, Kenji Matsuki, and Jarosław Włodarczyk, Torification and factorization of birational maps, J. Amer. Math. Soc. 15 (2002), no. 3, 531–572. MR 1896232, DOI 10.1090/S0894-0347-02-00396-X
- Dan Abramovich and Jianhua Wang, Equivariant resolution of singularities in characteristic $0$, Math. Res. Lett. 4 (1997), no. 2-3, 427–433. MR 1453072, DOI 10.4310/MRL.1997.v4.n3.a11
- F. A. Bogomolov, The Brauer group of quotient spaces of linear representations, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), no. 3, 485–516, 688 (Russian); English transl., Math. USSR-Izv. 30 (1988), no. 3, 455–485. MR 903621, DOI 10.1070/IM1988v030n03ABEH001024
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323, DOI 10.1007/978-1-4612-1700-8
- William Fulton and Robert MacPherson, A compactification of configuration spaces, Ann. of Math. (2) 139 (1994), no. 1, 183–225. MR 1259368, DOI 10.2307/2946631
- Lothar Göttsche, On the motive of the Hilbert scheme of points on a surface, Math. Res. Lett. 8 (2001), no. 5-6, 613–627. MR 1879805, DOI 10.4310/MRL.2001.v8.n5.a3
- A. Grothendieck and M. Demazure, Schémas en groupes, II: Groupes de type multiplicatif, et structure des schémas en groupes généraux, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3), Dirigé par M. Demazure et A. Grothendieck, Lecture Notes in Mathematics, vol. 152, Springer-Verlag, Berlin-New York, 1970, pp. ix+654.
- Akinari Hoshi, Ming-Chang Kang, and Boris E. Kunyavskii, Noether’s problem and unramified Brauer groups, Asian J. Math. 17 (2013), no. 4, 689–713. MR 3152260, DOI 10.4310/AJM.2013.v17.n4.a8
- G. Kempf, Finn Faye Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Mathematics, Vol. 339, Springer-Verlag, Berlin-New York, 1973. MR 335518
- H. W. Lenstra Jr., Rational functions invariant under a finite abelian group, Invent. Math. 25 (1974), 299–325. MR 347788, DOI 10.1007/BF01389732
- D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906
- Michael Larsen and Valery A. Lunts, Motivic measures and stable birational geometry, Mosc. Math. J. 3 (2003), no. 1, 85–95, 259 (English, with English and Russian summaries). MR 1996804, DOI 10.17323/1609-4514-2003-3-1-85-95
- Michael Larsen and Valery A. Lunts, Rationality criteria for motivic zeta functions, Compos. Math. 140 (2004), no. 6, 1537–1560. MR 2098401, DOI 10.1112/S0010437X04000764
- Johannes Nicaise and Evgeny Shinder, The motivic nearby fiber and degeneration of stable rationality, Invent. Math. 217 (2019), no. 2, 377–413. MR 3987174, DOI 10.1007/s00222-019-00869-2
- David J. Saltman, Noether’s problem over an algebraically closed field, Invent. Math. 77 (1984), no. 1, 71–84. MR 751131, DOI 10.1007/BF01389135
- The Stacks Project Authors, Stacks Project, https://stacks.columbia.math.edu, 2022.
- Richard G. Swan, Invariant rational functions and a problem of Steenrod, Invent. Math. 7 (1969), 148–158. MR 244215, DOI 10.1007/BF01389798
- Burt Totaro, Group cohomology and algebraic cycles, Cambridge Tracts in Mathematics, vol. 204, Cambridge University Press, Cambridge, 2014. MR 3185743, DOI 10.1017/CBO9781139059480
- Alexander P. Ulyanov, Polydiagonal compactification of configuration spaces, J. Algebraic Geom. 11 (2002), no. 1, 129–159. MR 1865916, DOI 10.1090/S1056-3911-01-00293-4
- Angelo Vistoli, Grothendieck topologies, fibered categories and descent theory, Fundamental algebraic geometry, Math. Surveys Monogr., vol. 123, Amer. Math. Soc., Providence, RI, 2005, pp. 1–104. MR 2223406
- V. E. Voskresenskiĭ, On the question of the structure of the subfield of invariants of a cyclic group of automorphisms of the field $Q(x_{1},\cdots ,x_{n})$, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 366–375 (Russian). MR 274427
- Jarosław Włodarczyk, Functorial resolution except for toroidal locus. Toroidal compactification, Adv. Math. 407 (2022), Paper No. 108551, 103. MR 4453596, DOI 10.1016/j.aim.2022.108551
Additional Information
Louis Esser
Affiliation:
Department of Mathematics, Princeton University, Princeton, New Jersey 08544-1000
MR Author ID:
1491708
ORCID:
0000-0002-1958-3029
Email:
esserl@math.princeton.edu
Federico Scavia
Affiliation:
CNRS, Institut Galilée, Université Sorbonne Paris Nord, 93430 Villetaneuse, France
MR Author ID:
1345006
Email:
scavia@math.univ-paris13.fr
Received by editor(s):
June 12, 2023
Received by editor(s) in revised form:
January 7, 2024
Published electronically:
May 17, 2024
Additional Notes:
The first author was partially supported by NSF grant DMS-2054553.
Article copyright:
© Copyright 2024
University Press, Inc.