On the cohomology of $p$-adic analytic spaces, I: The basic comparison theorem
Authors:
Pierre Colmez and Wiesława Nizioł
Journal:
J. Algebraic Geom.
DOI:
https://doi.org/10.1090/jag/835
Published electronically:
July 26, 2024
Full-text PDF
Abstract |
References |
Additional Information
Abstract: The purpose of this paper is to prove a basic $p$-adic comparison theorem for smooth rigid analytic and dagger varieties over the algebraic closure $C$ of a $p$-adic field: $p$-adic pro-étale cohomology, in a stable range, can be expressed as a filtered Frobenius eigenspace of de Rham cohomology (over ${\mathbf B}^+_{\operatorname {dR} }$). The key computation is the passage from absolute crystalline cohomology to Hyodo–Kato cohomology and the construction of the related Hyodo–Kato isomorphism. We also “geometrize” our comparison theorem by turning $p$-adic pro-étale and syntomic cohomologies into sheaves on the category ${\mathrm {Perf}}_C$ of perfectoid spaces over $C$ and the period morphisms into maps between such sheaves (this geometrization will be crucial in our study of the $C_{\mathrm {st}}$-conjecture in the sequel to this paper and in the formulation of duality for geometric $p$-adic pro-étale cohomology).
References
- Benjamin Antieau, Akhil Mathew, Matthew Morrow, and Thomas Nikolaus, On the Beilinson fiber square, Duke Math. J. 171 (2022), no. 18, 3707–3806. MR 4516307, DOI 10.1215/00127094-2022-0037
- A. Beilinson, $p$-adic periods and derived de Rham cohomology, J. Amer. Math. Soc. 25 (2012), no. 3, 715–738. MR 2904571, DOI 10.1090/S0894-0347-2012-00729-2
- A. Beilinson, On the crystalline period map, arXiv:1111.3316v1, 2011, This is the first preprint version of Beilinson [Camb. J. Math. 1 (2013), no. 1, 1–51].
- A. Beilinson, On the crystalline period map, Camb. J. Math. 1 (2013), no. 1, 1–51. MR 3272051, DOI 10.4310/CJM.2013.v1.n1.a1
- A. Beilinson, On the crystalline period map, arXiv:1111.3316v4, 2013, This is an extended version of Beilinson [Camb. J. Math. 1 (2013), no. 1, 1–51].
- Alexander Beilinson, Relative continuous $K$-theory and cyclic homology, Münster J. Math. 7 (2014), no. 1, 51–81. MR 3271239
- Vladimir G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, vol. 33, American Mathematical Society, Providence, RI, 1990. MR 1070709, DOI 10.1090/surv/033
- Pierre Berthelot, Cohomologie cristalline des schémas de caractéristique $p>0$, Lecture Notes in Mathematics, Vol. 407, Springer-Verlag, Berlin-New York, 1974 (French). MR 384804
- Pierre Berthelot, Lawrence Breen, and William Messing, Théorie de Dieudonné cristalline. II, Lecture Notes in Mathematics, vol. 930, Springer-Verlag, Berlin, 1982 (French). MR 667344, DOI 10.1007/BFb0093025
- Bhargav Bhatt, Matthew Morrow, and Peter Scholze, Integral $p$-adic Hodge theory, Publ. Math. Inst. Hautes Études Sci. 128 (2018), 219–397. MR 3905467, DOI 10.1007/s10240-019-00102-z
- Bhargav Bhatt, Matthew Morrow, and Peter Scholze, Topological Hochschild homology and integral $p$-adic Hodge theory, Publ. Math. Inst. Hautes Études Sci. 129 (2019), 199–310. MR 3949030, DOI 10.1007/s10240-019-00106-9
- Spencer Bloch and Kazuya Kato, $p$-adic étale cohomology, Inst. Hautes Études Sci. Publ. Math. 63 (1986), 107–152. MR 849653
- Kęstutis Česnavičius and Teruhisa Koshikawa, The $A_{\inf }$-cohomology in the semistable case, Compos. Math. 155 (2019), no. 11, 2039–2128. MR 4010431, DOI 10.1112/s0010437x1800790x
- Pierre Colmez, Espaces de Banach de dimension finie, J. Inst. Math. Jussieu 1 (2002), no. 3, 331–439 (French, with English and French summaries). MR 1956055, DOI 10.1017/S1474748002000099
- Pierre Colmez, Espaces vectoriels de dimension finie et représentations de de Rham, Astérisque 319 (2008), 117–186 (French, with English and French summaries). Représentations $p$-adiques de groupes $p$-adiques. I. Représentations galoisiennes et $(\phi ,\Gamma )$-modules. MR 2493217
- Pierre Colmez, Gabriel Dospinescu, and Wiesława Nizioł, Cohomologie $p$-adique de la tour de Drinfeld: le cas de la dimension 1, J. Amer. Math. Soc. 33 (2020), no. 2, 311–362 (French). MR 4073863, DOI 10.1090/jams/935
- Pierre Colmez, Gabriel Dospinescu, and Wiesława Nizioł, Cohomology of $p$-adic Stein spaces, Invent. Math. 219 (2020), no. 3, 873–985. MR 4055181, DOI 10.1007/s00222-019-00923-z
- P. Colmez, S. Gilles, and W. Nizioł, Geometric duality for $p$-adic pro-étale cohomology of analytic curves, In preparation, See Oberwolfach report 05/2022, https://publications.mfo.de/handle/mfo/3949.
- Pierre Colmez and Wiesława Nizioł, Syntomic complexes and $p$-adic nearby cycles, Invent. Math. 208 (2017), no. 1, 1–108. MR 3621832, DOI 10.1007/s00222-016-0683-3
- Pierre Colmez and Wiesława Nizioł, On $p$-adic comparison theorems for rigid analytic varieties, I, Münster J. Math. 13 (2020), no. 2, 445–507. MR 4130689
- P. Colmez and W. Nizioł, On the cohomology of $p$-adic analytic spaces, II: The $C_{\mathrm {st}}$-conjecture, arXiv:2108.12785v1 [math.AG], 2021.
- Renée Elkik, Solutions d’équations à coefficients dans un anneau hensélien, Ann. Sci. École Norm. Sup. (4) 6 (1973), 553–603 (1974) (French). MR 345966
- V. Ertl and K. Yamada, Rigid analytic reconstruction of Hyodo–Kato theory, arXiv:1907.10964v2 [math.NT], 2020.
- Jean-Marc Fontaine, Le corps des périodes $p$-adiques, Astérisque 223 (1994), 59–111 (French). With an appendix by Pierre Colmez; Périodes $p$-adiques (Bures-sur-Yvette, 1988). MR 1293971
- Jean-Marc Fontaine and William Messing, $p$-adic periods and $p$-adic étale cohomology, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985) Contemp. Math., vol. 67, Amer. Math. Soc., Providence, RI, 1987, pp. 179–207. MR 902593, DOI 10.1090/conm/067/902593
- Sally Gilles, Morphismes de périodes et cohomologie syntomique, Algebra Number Theory 17 (2023), no. 3, 603–666 (French, with English and French summaries). MR 4578002, DOI 10.2140/ant.2023.17.603
- Elmar Grosse-Klönne, Rigid analytic spaces with overconvergent structure sheaf, J. Reine Angew. Math. 519 (2000), 73–95. MR 1739729, DOI 10.1515/crll.2000.018
- Elmar Große-Klönne, De Rham cohomology of rigid spaces, Math. Z. 247 (2004), no. 2, 223–240. MR 2064051, DOI 10.1007/s00209-003-0544-9
- Elmar Grosse-Klönne, Frobenius and monodromy operators in rigid analysis, and Drinfel′d’s symmetric space, J. Algebraic Geom. 14 (2005), no. 3, 391–437. MR 2129006, DOI 10.1090/S1056-3911-05-00402-9
- H. Guo, Crystalline cohomology of rigid analytic spaces, arXiv:2112.14304v1 [math.AG], 2021.
- Haoyang Guo and Shizhang Li, Period sheaves via derived de Rham cohomology, Compos. Math. 157 (2021), no. 11, 2377–2406. MR 4323988, DOI 10.1112/s0010437x21007545
- Owen Gwilliam and Dmitri Pavlov, Enhancing the filtered derived category, J. Pure Appl. Algebra 222 (2018), no. 11, 3621–3674. MR 3806745, DOI 10.1016/j.jpaa.2018.01.004
- Urs T. Hartl, Semi-stable models for rigid-analytic spaces, Manuscripta Math. 110 (2003), no. 3, 365–380. MR 1969007, DOI 10.1007/s00229-002-0349-x
- Osamu Hyodo and Kazuya Kato, Semi-stable reduction and crystalline cohomology with logarithmic poles, Astérisque 223 (1994), 221–268. Périodes $p$-adiques (Bures-sur-Yvette, 1988). MR 1293974
- Arthur-César Le Bras, Espaces de Banach-Colmez et faisceaux cohérents sur la courbe de Fargues-Fontaine, Duke Math. J. 167 (2018), no. 18, 3455–3532 (French, with English and French summaries). MR 3881201, DOI 10.1215/00127094-2018-0034
- Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009. MR 2522659, DOI 10.1515/9781400830558
- J. Lurie, Higher algebra, 2017, https://www.math.ias.edu/~lurie/papers/HA.pdf.
- Werner Lütkebohmert, Rigid geometry of curves and their Jacobians, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 61, Springer, Cham, 2016. MR 3467043, DOI 10.1007/978-3-319-27371-6
- A. Mokrane, La suite spectrale des poids en cohomologie de Hyodo-Kato, Duke Math. J. 72 (1993), no. 2, 301–337 (French). MR 1248675, DOI 10.1215/S0012-7094-93-07211-0
- Jan Nekovář and Wiesława Nizioł, Syntomic cohomology and $p$-adic regulators for varieties over $p$-adic fields, Algebra Number Theory 10 (2016), no. 8, 1695–1790. With appendices by Laurent Berger and Frédéric Déglise. MR 3556797, DOI 10.2140/ant.2016.10.1695
- Wiesława Nizioł, Geometric syntomic cohomology and vector bundles on the Fargues-Fontaine curve, J. Algebraic Geom. 28 (2019), no. 4, 605–648. MR 3994308, DOI 10.1090/jag/742
- Peter Scholze, Perfectoid spaces, Publ. Math. Inst. Hautes Études Sci. 116 (2012), 245–313. MR 3090258, DOI 10.1007/s10240-012-0042-x
- Peter Scholze, $p$-adic Hodge theory for rigid-analytic varieties, Forum Math. Pi 1 (2013), e1, 77. MR 3090230, DOI 10.1017/fmp.2013.1
- The Stacks Project authors, Stack Project, http://stacks.math.columbia.edu, 2018.
- Michael Temkin, Altered local uniformization of Berkovich spaces, Israel J. Math. 221 (2017), no. 2, 585–603. MR 3704927, DOI 10.1007/s11856-017-1557-0
- Takeshi Tsuji, $p$-adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Invent. Math. 137 (1999), no. 2, 233–411. MR 1705837, DOI 10.1007/s002220050330
- Alberto Vezzani, The Monsky-Washnitzer and the overconvergent realizations, Int. Math. Res. Not. IMRN 11 (2018), 3443–3489. MR 3810223, DOI 10.1093/imrn/rnw335
References
- Benjamin Antieau, Akhil Mathew, Matthew Morrow, and Thomas Nikolaus, On the Beilinson fiber square, Duke Math. J. 171 (2022), no. 18, 3707–3806. MR 4516307, DOI 10.1215/00127094-2022-0037
- A. Beilinson, $p$-adic periods and derived de Rham cohomology, J. Amer. Math. Soc. 25 (2012), no. 3, 715–738. MR 2904571, DOI 10.1090/S0894-0347-2012-00729-2
- A. Beilinson, On the crystalline period map, arXiv:1111.3316v1, 2011, This is the first preprint version of Beilinson [Camb. J. Math. 1 (2013), no. 1, 1–51].
- A. Beilinson, On the crystalline period map, Camb. J. Math. 1 (2013), no. 1, 1–51. MR 3272051, DOI 10.4310/CJM.2013.v1.n1.a1
- A. Beilinson, On the crystalline period map, arXiv:1111.3316v4, 2013, This is an extended version of Beilinson [Camb. J. Math. 1 (2013), no. 1, 1–51].
- Alexander Beilinson, Relative continuous $K$-theory and cyclic homology, Münster J. Math. 7 (2014), no. 1, 51–81. MR 3271239
- Vladimir G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, vol. 33, American Mathematical Society, Providence, RI, 1990. MR 1070709, DOI 10.1090/surv/033
- Pierre Berthelot, Cohomologie cristalline des schémas de caractéristique $p>0$, Lecture Notes in Mathematics, Vol. 407, Springer-Verlag, Berlin-New York, 1974 (French). MR 384804
- Pierre Berthelot, Lawrence Breen, and William Messing, Théorie de Dieudonné cristalline. II, Lecture Notes in Mathematics, vol. 930, Springer-Verlag, Berlin, 1982 (French). MR 667344, DOI 10.1007/BFb0093025
- Bhargav Bhatt, Matthew Morrow, and Peter Scholze, Integral $p$-adic Hodge theory, Publ. Math. Inst. Hautes Études Sci. 128 (2018), 219–397. MR 3905467, DOI 10.1007/s10240-019-00102-z
- Bhargav Bhatt, Matthew Morrow, and Peter Scholze, Topological Hochschild homology and integral $p$-adic Hodge theory, Publ. Math. Inst. Hautes Études Sci. 129 (2019), 199–310. MR 3949030, DOI 10.1007/s10240-019-00106-9
- Spencer Bloch and Kazuya Kato, $p$-adic étale cohomology, Inst. Hautes Études Sci. Publ. Math. 63 (1986), 107–152. MR 849653
- Kęstutis Česnavičius and Teruhisa Koshikawa, The $A_{\inf }$-cohomology in the semistable case, Compos. Math. 155 (2019), no. 11, 2039–2128. MR 4010431, DOI 10.1112/s0010437x1800790x
- Pierre Colmez, Espaces de Banach de dimension finie, J. Inst. Math. Jussieu 1 (2002), no. 3, 331–439 (French, with English and French summaries). MR 1956055, DOI 10.1017/S1474748002000099
- Pierre Colmez, Espaces vectoriels de dimension finie et représentations de de Rham, Astérisque 319 (2008), 117–186 (French, with English and French summaries). Représentations $p$-adiques de groupes $p$-adiques. I. Représentations galoisiennes et $(\varphi ,\Gamma )$-modules. MR 2493217
- Pierre Colmez, Gabriel Dospinescu, and Wiesława Nizioł, Cohomologie $p$-adique de la tour de Drinfeld: le cas de la dimension 1, J. Amer. Math. Soc. 33 (2020), no. 2, 311–362 (French). MR 4073863, DOI 10.1090/jams/935
- Pierre Colmez, Gabriel Dospinescu, and Wiesława Nizioł, Cohomology of $p$-adic Stein spaces, Invent. Math. 219 (2020), no. 3, 873–985. MR 4055181, DOI 10.1007/s00222-019-00923-z
- P. Colmez, S. Gilles, and W. Nizioł, Geometric duality for $p$-adic pro-étale cohomology of analytic curves, In preparation, See Oberwolfach report 05/2022, https://publications.mfo.de/handle/mfo/3949.
- Pierre Colmez and Wiesława Nizioł, Syntomic complexes and $p$-adic nearby cycles, Invent. Math. 208 (2017), no. 1, 1–108. MR 3621832, DOI 10.1007/s00222-016-0683-3
- Pierre Colmez and Wiesława Nizioł, On $p$-adic comparison theorems for rigid analytic varieties, I, Münster J. Math. 13 (2020), no. 2, 445–507. MR 4130689
- P. Colmez and W. Nizioł, On the cohomology of $p$-adic analytic spaces, II: The $C_{\mathrm {st}}$-conjecture, arXiv:2108.12785v1 [math.AG], 2021.
- Renée Elkik, Solutions d’équations à coefficients dans un anneau hensélien, Ann. Sci. École Norm. Sup. (4) 6 (1973), 553–603 (French). MR 345966
- V. Ertl and K. Yamada, Rigid analytic reconstruction of Hyodo–Kato theory, arXiv:1907.10964v2 [math.NT], 2020.
- Jean-Marc Fontaine, Le corps des périodes $p$-adiques, Astérisque 223 (1994), 59–111 (French). With an appendix by Pierre Colmez; Périodes $p$-adiques (Bures-sur-Yvette, 1988). MR 1293971
- Jean-Marc Fontaine and William Messing, $p$-adic periods and $p$-adic étale cohomology, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985) Contemp. Math., vol. 67, Amer. Math. Soc., Providence, RI, 1987, pp. 179–207. MR 902593, DOI 10.1090/conm/067/902593
- Sally Gilles, Morphismes de périodes et cohomologie syntomique, Algebra Number Theory 17 (2023), no. 3, 603–666 (French, with English and French summaries). MR 4578002, DOI 10.2140/ant.2023.17.603
- Elmar Grosse-Klönne, Rigid analytic spaces with overconvergent structure sheaf, J. Reine Angew. Math. 519 (2000), 73–95. MR 1739729, DOI 10.1515/crll.2000.018
- Elmar Große-Klönne, De Rham cohomology of rigid spaces, Math. Z. 247 (2004), no. 2, 223–240. MR 2064051, DOI 10.1007/s00209-003-0544-9
- Elmar Grosse-Klönne, Frobenius and monodromy operators in rigid analysis, and Drinfel′d’s symmetric space, J. Algebraic Geom. 14 (2005), no. 3, 391–437. MR 2129006, DOI 10.1090/S1056-3911-05-00402-9
- H. Guo, Crystalline cohomology of rigid analytic spaces, arXiv:2112.14304v1 [math.AG], 2021.
- Haoyang Guo and Shizhang Li, Period sheaves via derived de Rham cohomology, Compos. Math. 157 (2021), no. 11, 2377–2406. MR 4323988, DOI 10.1112/s0010437x21007545
- Owen Gwilliam and Dmitri Pavlov, Enhancing the filtered derived category, J. Pure Appl. Algebra 222 (2018), no. 11, 3621–3674. MR 3806745, DOI 10.1016/j.jpaa.2018.01.004
- Urs T. Hartl, Semi-stable models for rigid-analytic spaces, Manuscripta Math. 110 (2003), no. 3, 365–380. MR 1969007, DOI 10.1007/s00229-002-0349-x
- Osamu Hyodo and Kazuya Kato, Semi-stable reduction and crystalline cohomology with logarithmic poles, Astérisque 223 (1994), 221–268. Périodes $p$-adiques (Bures-sur-Yvette, 1988). MR 1293974
- Arthur-César Le Bras, Espaces de Banach-Colmez et faisceaux cohérents sur la courbe de Fargues-Fontaine, Duke Math. J. 167 (2018), no. 18, 3455–3532 (French, with English and French summaries). MR 3881201, DOI 10.1215/00127094-2018-0034
- Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009. MR 2522659, DOI 10.1515/9781400830558
- J. Lurie, Higher algebra, 2017, https://www.math.ias.edu/~lurie/papers/HA.pdf.
- Werner Lütkebohmert, Rigid geometry of curves and their Jacobians, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 61, Springer, Cham, 2016. MR 3467043, DOI 10.1007/978-3-319-27371-6
- A. Mokrane, La suite spectrale des poids en cohomologie de Hyodo–Kato, Duke Math. J. 72 (1993), no. 2, 301–337 (French). MR 1248675, DOI 10.1215/S0012-7094-93-07211-0
- Jan Nekovář and Wiesława Nizioł, Syntomic cohomology and $p$-adic regulators for varieties over $p$-adic fields, Algebra Number Theory 10 (2016), no. 8, 1695–1790. With appendices by Laurent Berger and Frédéric Déglise. MR 3556797, DOI 10.2140/ant.2016.10.1695
- Wiesława Nizioł, Geometric syntomic cohomology and vector bundles on the Fargues-Fontaine curve, J. Algebraic Geom. 28 (2019), no. 4, 605–648. MR 3994308, DOI 10.1090/jag/742
- Peter Scholze, Perfectoid spaces, Publ. Math. Inst. Hautes Études Sci. 116 (2012), 245–313. MR 3090258, DOI 10.1007/s10240-012-0042-x
- Peter Scholze, $p$-adic Hodge theory for rigid-analytic varieties, Forum Math. Pi 1 (2013), e1, 77. MR 3090230, DOI 10.1017/fmp.2013.1
- The Stacks Project authors, Stack Project, http://stacks.math.columbia.edu, 2018.
- Michael Temkin, Altered local uniformization of Berkovich spaces, Israel J. Math. 221 (2017), no. 2, 585–603. MR 3704927, DOI 10.1007/s11856-017-1557-0
- Takeshi Tsuji, $p$-adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Invent. Math. 137 (1999), no. 2, 233–411. MR 1705837, DOI 10.1007/s002220050330
- Alberto Vezzani, The Monsky-Washnitzer and the overconvergent realizations, Int. Math. Res. Not. IMRN 11 (2018), 3443–3489. MR 3810223, DOI 10.1093/imrn/rnw335
Additional Information
Pierre Colmez
Affiliation:
CNRS, IMJ-PRG, Sorbonne Université, 75005 Paris, France
MR Author ID:
50720
Email:
pierre.colmez@imj-prg.fr
Wiesława Nizioł
Affiliation:
CNRS, IMJ-PRG, Sorbonne Université, 75005 Paris, France
Email:
wieslawa.niziol@imj-prg.fr
Received by editor(s):
March 12, 2022
Received by editor(s) in revised form:
April 12, 2023, and November 1, 2023
Published electronically:
July 26, 2024
Additional Notes:
The authors’ research was supported in part by the grant ANR-19-CE40-0015-02 COLOSS and the NSF grant No. DMS-1440140.
Article copyright:
© Copyright 2024
University Press, Inc.