Normal forms and moduli stacks for logarithmic flat connections
Author:
Francis Bischoff
Journal:
J. Algebraic Geom.
DOI:
https://doi.org/10.1090/jag/837
Published electronically:
September 13, 2024
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We establish normal form theorems for a large class of singular flat connections on complex manifolds, including connections with logarithmic poles along weighted homogeneous Saito free divisors. As a result, we show that the moduli spaces of such connections admit the structure of algebraic quotient stacks. In order to prove these results, we introduce homogeneous Lie groupoids and study their representation theory. In this direction, we prove two main results: a Jordan–Chevalley decomposition theorem and a linearization theorem. We give explicit normal forms for several examples of free divisors, such as homogeneous plane curves, reductive free divisors, and one of Sekiguchi’s free divisors.
References
- Donald G. Babbitt and V. S. Varadarajan, Formal reduction theory of meromorphic differential equations: a group theoretic view, Pacific J. Math. 109 (1983), no. 1, 1–80. MR 716289
- Gergely Bérczi, Brent Doran, Thomas Hawes, and Frances Kirwan, Geometric invariant theory for graded unipotent groups and applications, J. Topol. 11 (2018), no. 3, 826–855. MR 3989432, DOI 10.1112/topo.12075
- A. Beĭlinson and J. Bernstein, A proof of Jantzen conjectures, I. M. Gel′fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 1–50. MR 1237825
- Francis Bischoff, Lie groupoids and logarithmic connections, Selecta Math. (N.S.) 30 (2024), no. 3, Paper No. 44, 34. MR 4728307, DOI 10.1007/s00029-024-00929-3
- P. P. Boalch, Riemann-Hilbert for tame complex parahoric connections, Transform. Groups 16 (2011), no. 1, 27–50. MR 2785493, DOI 10.1007/s00031-011-9121-1
- S. Bochner, Compact groups of differentiable transformations, Ann. of Math. (2) 46 (1945), 372–381. MR 13161, DOI 10.2307/1969157
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012, DOI 10.1007/978-1-4612-0941-6
- Ragnar-Olaf Buchweitz and David Mond, Linear free divisors and quiver representations, Singularities and computer algebra, London Math. Soc. Lecture Note Ser., vol. 324, Cambridge Univ. Press, Cambridge, 2006, pp. 41–77. MR 2228227, DOI 10.1017/CBO9780511526374.006
- Henrique Bursztyn, David Iglesias-Ponte, and Jiang-Hua Lu, Dirac geometry and integration of Poisson homogeneous spaces, J. Differential Geom. 126 (2024), no. 3, 939–1000. MR 4753491, DOI 10.4310/jdg/1717348869
- Francisco J. Calderón Moreno, Luis Narváez Macarro, Orlando Neto, and Pedro C. Silva, Local systems and regular meromorphic connection of rank 2 along the plane curve $x^{p}-y^{q} =0$, with $gcd(p,q)=1$, Preprint, 2022.
- Marius Crainic and Rui Loja Fernandes, Integrability of Lie brackets, Ann. of Math. (2) 157 (2003), no. 2, 575–620. MR 1973056, DOI 10.4007/annals.2003.157.575
- Marius Crainic and Rui Loja Fernandes, Lectures on integrability of Lie brackets, Lectures on Poisson geometry, Geom. Topol. Monogr., vol. 17, Geom. Topol. Publ., Coventry, 2011, pp. 1–107. MR 2795150, DOI 10.2140/gt
- Claire Debord, Holonomy groupoids of singular foliations, J. Differential Geom. 58 (2001), no. 3, 467–500. MR 1906783
- Matias L. del Hoyo, Lie groupoids and their orbispaces, Port. Math. 70 (2013), no. 2, 161–209. MR 3089760, DOI 10.4171/PM/1930
- Brent Doran and Frances Kirwan, Towards non-reductive geometric invariant theory, Pure Appl. Math. Q. 3 (2007), no. 1, Special Issue: In honor of Robert D. MacPherson., 61–105. MR 2330155, DOI 10.4310/PAMQ.2007.v3.n1.a3
- Rui Loja Fernandes and Ivan Struchiner, The global solutions to Cartan’s realization problem, arXiv:1907.13614 (2019).
- F. R. Gantmacher, The theory of matrices. Vols. 1, 2, Chelsea Publishing Co., New York, 1959. Translated by K. A. Hirsch. MR 107649
- M. Granger and D. Mond, Linear free divisors and quivers, Preprint, 2007.
- Michel Granger, David Mond, Alicia Nieto-Reyes, and Mathias Schulze, Linear free divisors and the global logarithmic comparison theorem, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 2, 811–850 (English, with English and French summaries). MR 2521436, DOI 10.5802/aif.2448
- Michel Granger, David Mond, and Mathias Schulze, Free divisors in prehomogeneous vector spaces, Proc. Lond. Math. Soc. (3) 102 (2011), no. 5, 923–950. MR 2795728, DOI 10.1112/plms/pdq046
- Marco Gualtieri, Songhao Li, and Brent Pym, The Stokes groupoids, J. Reine Angew. Math. 739 (2018), 81–119. MR 3808258, DOI 10.1515/crelle-2015-0057
- Victor W. Guillemin and Shlomo Sternberg, Remarks on a paper of Hermann, Trans. Amer. Math. Soc. 130 (1968), 110–116. MR 217226, DOI 10.1090/S0002-9947-1968-0217226-9
- Robert Hermann, The formal linearization of a semisimple Lie algebra of vector fields about a singular point, Trans. Amer. Math. Soc. 130 (1968), 105–109. MR 217225, DOI 10.1090/S0002-9947-1968-0217225-7
- Masuo Hukuhara, Sur l’unicite de la solution d’un système d’équations différentielles ordinaires, Proc. Imp. Acad. Tokyo 11 (1935), no. 9, 348–350 (French). MR 1568411
- Masuo Hukuhara, Théorèmes fondamentaux de la théorie des équations différentielles ordinaires. II, Mem. Fac. Sci. Kyūsyū Imp. Univ. A 2 (1941), 1–25 (French). MR 5229
- James E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975. MR 396773
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York-Berlin, 1978. Second printing, revised. MR 499562
- Masoud Kamgarpour and Samuel Weatherhog, Jordan decomposition for formal $G$-connections, Grad. J. Math. 5 (2020), no. 2, 111–121. MR 4186767
- V. A. Kleptsyn and B. A. Rabinovich, Analytic classification of Fuchsian singular points, Mat. Zametki 76 (2004), no. 3, 372–383 (Russian, with Russian summary); English transl., Math. Notes 76 (2004), no. 3-4, 348–357. MR 2113080, DOI 10.1023/B:MATN.0000043462.06397.ab
- A. G. Kušnirenko, An analytic action of a semisimple Lie group in a neighborhood of a fixed point is equivalent to a linear one, Funkcional. Anal. i Priložen. 1 (1967), 103–104 (Russian). MR 210833
- A. H. M. Levelt, Hypergeometric functions. IV, Indag. Math. 23 (1961), 397–403. Nederl. Akad. Wetensch. Proc. Ser. A 64. MR 137856
- A. H. M. Levelt, Jordan decomposition for a class of singular differential operators, Ark. Mat. 13 (1975), 1–27. MR 500294, DOI 10.1007/BF02386195
- Paul Levy, Centralizers of semisimple subgroups, MathOverflow, accessed March 19, 2022, https://mathoverflow.net/q/403246 (version: 2021-09-06).
- Kirill C. H. Mackenzie and Ping Xu, Integration of Lie bialgebroids, Topology 39 (2000), no. 3, 445–467. MR 1746902, DOI 10.1016/S0040-9383(98)00069-X
- Bernard Malgrange, Sur la réduction formelle des équations différentielles à singularités irrégulières, Preprint, 1979.
- W. T. Martin, Mappings by means of systems of analytic functions of several complex variables, Bull. Amer. Math. Soc. 50 (1944), 5–19. MR 9641, DOI 10.1090/S0002-9904-1944-08043-9
- Ieke Moerdijk and Janez Mrčun, On integrability of infinitesimal actions, Amer. J. Math. 124 (2002), no. 3, 567–593. MR 1902889
- Dmitry Novikov and Sergei Yakovenko, Lectures on meromorphic flat connections, Normal forms, bifurcations and finiteness problems in differential equations, NATO Sci. Ser. II Math. Phys. Chem., vol. 137, Kluwer Acad. Publ., Dordrecht, 2004, pp. 387–430. MR 2085816, DOI 10.1007/978-94-007-1025-2_{1}1
- P. Robba, Lemmes de Hensel pour les opérateurs différentiels. Application à la réduction formelle des équations différentielles, Enseign. Math. (2) 26 (1980), no. 3-4, 279–311 (1981) (French). MR 610528
- Patrick J. Robinson, The Classification of Dirac Homogeneous Spaces, ProQuest LLC, Ann Arbor, MI, 2015. Thesis (Ph.D.)–University of Toronto (Canada). MR 3427248
- Kyoji Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 2, 265–291. MR 586450
- M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1–155. MR 430336
- Jiro Sekiguchi, A classification of weighted homogeneous Saito free divisors, J. Math. Soc. Japan 61 (2009), no. 4, 1071–1095. MR 2588504
- Michele Torielli, Deformations of free and linear free divisors, Ann. Inst. Fourier (Grenoble) 63 (2013), no. 6, 2097–2136 (English, with English and French summaries). MR 3237442, DOI 10.5802/aif.2824
- H. L. Turrittin, Convergent solutions of ordinary linear homogeneous differential equations in the neighborhood of an irregular singular point, Acta Math. 93 (1955), 27–66. MR 68689, DOI 10.1007/BF02392519
- Wolfgang Wasow, Asymptotic expansions for ordinary differential equations, Dover Publications, Inc., New York, 1987. Reprint of the 1976 edition. MR 919406
- Masaaki Yoshida and Kyoichi Takano, Local theory of Fuchsian systems. I, Proc. Japan Acad. 51 (1975), no. 4, 219–223. MR 382766
- Masaaki Yoshida and Kyoichi Takano, On a linear system of Pfaffian equations with regular singular points, Funkcial. Ekvac. 19 (1976), no. 2, 175–189. MR 436189
References
- Donald G. Babbitt and V. S. Varadarajan, Formal reduction theory of meromorphic differential equations: a group theoretic view, Pacific J. Math. 109 (1983), no. 1, 1–80. MR 716289
- Gergely Bérczi, Brent Doran, Thomas Hawes, and Frances Kirwan, Geometric invariant theory for graded unipotent groups and applications, J. Topol. 11 (2018), no. 3, 826–855. MR 3989432, DOI 10.1112/topo.12075
- A. Beĭlinson and J. Bernstein, A proof of Jantzen conjectures, I. M. Gel′fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 1–50. MR 1237825
- Francis Bischoff, Lie groupoids and logarithmic connections, Selecta Math. (N.S.) 30 (2024), no. 3, Paper No. 44, 34. MR 4728307, DOI 10.1007/s00029-024-00929-3
- P. P. Boalch, Riemann-Hilbert for tame complex parahoric connections, Transform. Groups 16 (2011), no. 1, 27–50. MR 2785493, DOI 10.1007/s00031-011-9121-1
- S. Bochner, Compact groups of differentiable transformations, Ann. of Math. (2) 46 (1945), 372–381. MR 13161, DOI 10.2307/1969157
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012, DOI 10.1007/978-1-4612-0941-6
- Ragnar-Olaf Buchweitz and David Mond, Linear free divisors and quiver representations, Singularities and computer algebra, London Math. Soc. Lecture Note Ser., vol. 324, Cambridge Univ. Press, Cambridge, 2006, pp. 41–77. MR 2228227, DOI 10.1017/CBO9780511526374.006
- Henrique Bursztyn, David Iglesias-Ponte, and Jiang-Hua Lu, Dirac geometry and integration of Poisson homogeneous spaces, J. Differential Geom. 126 (2024), no. 3, 939–1000. MR 4753491, DOI 10.4310/jdg/1717348869
- Francisco J. Calderón Moreno, Luis Narváez Macarro, Orlando Neto, and Pedro C. Silva, Local systems and regular meromorphic connection of rank 2 along the plane curve $x^{p}-y^{q} =0$, with $gcd(p,q)=1$, Preprint, 2022.
- Marius Crainic and Rui Loja Fernandes, Integrability of Lie brackets, Ann. of Math. (2) 157 (2003), no. 2, 575–620. MR 1973056, DOI 10.4007/annals.2003.157.575
- Marius Crainic and Rui Loja Fernandes, Lectures on integrability of Lie brackets, Lectures on Poisson geometry, Geom. Topol. Monogr., vol. 17, Geom. Topol. Publ., Coventry, 2011, pp. 1–107. MR 2795150, DOI 10.2140/gt
- Claire Debord, Holonomy groupoids of singular foliations, J. Differential Geom. 58 (2001), no. 3, 467–500. MR 1906783
- Matias L. del Hoyo, Lie groupoids and their orbispaces, Port. Math. 70 (2013), no. 2, 161–209. MR 3089760, DOI 10.4171/PM/1930
- Brent Doran and Frances Kirwan, Towards non-reductive geometric invariant theory, Pure Appl. Math. Q. 3 (2007), no. 1, Special Issue: In honor of Robert D. MacPherson., 61–105. MR 2330155, DOI 10.4310/PAMQ.2007.v3.n1.a3
- Rui Loja Fernandes and Ivan Struchiner, The global solutions to Cartan’s realization problem, arXiv:1907.13614 (2019).
- F. R. Gantmacher, The theory of matrices. Vols. 1, 2, Chelsea Publishing Co., New York, 1959. Translated by K. A. Hirsch. MR 107649
- M. Granger and D. Mond, Linear free divisors and quivers, Preprint, 2007.
- Michel Granger, David Mond, Alicia Nieto-Reyes, and Mathias Schulze, Linear free divisors and the global logarithmic comparison theorem, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 2, 811–850 (English, with English and French summaries). MR 2521436, DOI 10.5802/aif.2448
- Michel Granger, David Mond, and Mathias Schulze, Free divisors in prehomogeneous vector spaces, Proc. Lond. Math. Soc. (3) 102 (2011), no. 5, 923–950. MR 2795728, DOI 10.1112/plms/pdq046
- Marco Gualtieri, Songhao Li, and Brent Pym, The Stokes groupoids, J. Reine Angew. Math. 739 (2018), 81–119. MR 3808258, DOI 10.1515/crelle-2015-0057
- Victor W. Guillemin and Shlomo Sternberg, Remarks on a paper of Hermann, Trans. Amer. Math. Soc. 130 (1968), 110–116. MR 217226, DOI 10.2307/1994774
- Robert Hermann, The formal linearization of a semisimple Lie algebra of vector fields about a singular point, Trans. Amer. Math. Soc. 130 (1968), 105–109. MR 217225, DOI 10.2307/1994773
- Masuo Hukuhara, Sur l’unicite de la solution d’un système d’équations différentielles ordinaires, Proc. Imp. Acad. Tokyo 11 (1935), no. 9, 348–350 (French). MR 1568411
- Masuo Hukuhara, Théorèmes fondamentaux de la théorie des équations différentielles ordinaires. II, Mem. Fac. Sci. Kyūsyū Imp. Univ. A 2 (1941), 1–25 (French). MR 5229
- James E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975. MR 396773
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York-Berlin, 1978. Second printing, revised. MR 499562
- Masoud Kamgarpour and Samuel Weatherhog, Jordan decomposition for formal $G$-connections, Grad. J. Math. 5 (2020), no. 2, 111–121. MR 4186767
- V. A. Kleptsyn and B. A. Rabinovich, Analytic classification of Fuchsian singular points, Mat. Zametki 76 (2004), no. 3, 372–383 (Russian, with Russian summary); English transl., Math. Notes 76 (2004), no. 3-4, 348–357. MR 2113080, DOI 10.1023/B:MATN.0000043462.06397.ab
- A. G. Kušnirenko, An analytic action of a semisimple Lie group in a neighborhood of a fixed point is equivalent to a linear one, Funkcional. Anal. i Priložen. 1 (1967), 103–104 (Russian). MR 210833
- A. H. M. Levelt, Hypergeometric functions. IV, Indag. Math. 23 (1961), 397–403. Nederl. Akad. Wetensch. Proc. Ser. A 64. MR 137856
- A. H. M. Levelt, Jordan decomposition for a class of singular differential operators, Ark. Mat. 13 (1975), 1–27. MR 500294, DOI 10.1007/BF02386195
- Paul Levy, Centralizers of semisimple subgroups, MathOverflow, accessed March 19, 2022, https://mathoverflow.net/q/403246 (version: 2021-09-06).
- Kirill C. H. Mackenzie and Ping Xu, Integration of Lie bialgebroids, Topology 39 (2000), no. 3, 445–467. MR 1746902, DOI 10.1016/S0040-9383(98)00069-X
- Bernard Malgrange, Sur la réduction formelle des équations différentielles à singularités irrégulières, Preprint, 1979.
- W. T. Martin, Mappings by means of systems of analytic functions of several complex variables, Bull. Amer. Math. Soc. 50 (1944), 5–19. MR 0009641, DOI 10.1090/S0002-9904-1944-08043-9
- Ieke Moerdijk and Janez Mrčun, On integrability of infinitesimal actions, Amer. J. Math. 124 (2002), no. 3, 567–593. MR 1902889
- Dmitry Novikov and Sergei Yakovenko, Lectures on meromorphic flat connections, Normal forms, bifurcations and finiteness problems in differential equations, NATO Sci. Ser. II Math. Phys. Chem., vol. 137, Kluwer Acad. Publ., Dordrecht, 2004, pp. 387–430. MR 2085816, DOI 10.1007/978-94-007-1025-2_11
- P. Robba, Lemmes de Hensel pour les opérateurs différentiels. Application à la réduction formelle des équations différentielles, Enseign. Math. (2) 26 (1980), no. 3-4, 279–311 (1981) (French). MR 610528
- Patrick J. Robinson, The Classification of Dirac Homogeneous Spaces, ProQuest LLC, Ann Arbor, MI, 2015. Thesis (Ph.D.)–University of Toronto (Canada). MR 3427248
- Kyoji Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 2, 265–291. MR 586450
- M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1–155. MR 430336
- Jiro Sekiguchi, A classification of weighted homogeneous Saito free divisors, J. Math. Soc. Japan 61 (2009), no. 4, 1071–1095. MR 2588504
- Michele Torielli, Deformations of free and linear free divisors, Ann. Inst. Fourier (Grenoble) 63 (2013), no. 6, 2097–2136 (English, with English and French summaries). MR 3237442, DOI 10.5802/aif.2824
- H. L. Turrittin, Convergent solutions of ordinary linear homogeneous differential equations in the neighborhood of an irregular singular point, Acta Math. 93 (1955), 27–66. MR 68689, DOI 10.1007/BF02392519
- Wolfgang Wasow, Asymptotic expansions for ordinary differential equations, Dover Publications, Inc., New York, 1987. Reprint of the 1976 edition. MR 919406
- Masaaki Yoshida and Kyoichi Takano, Local theory of Fuchsian systems. I, Proc. Japan Acad. 51 (1975), no. 4, 219–223. MR 382766
- Masaaki Yoshida and Kyoichi Takano, On a linear system of Pfaffian equations with regular singular points, Funkcial. Ekvac. 19 (1976), no. 2, 175–189. MR 436189
Additional Information
Francis Bischoff
Affiliation:
Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
Address at time of publication:
Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
MR Author ID:
1396134
ORCID:
0000-0001-6995-5911
Email:
Francis.Bischoff@uregina.ca
Received by editor(s):
February 6, 2023
Received by editor(s) in revised form:
February 21, 2024, and May 30, 2024
Published electronically:
September 13, 2024
Article copyright:
© Copyright 2024
University Press, Inc.