The Kodaira classification of the moduli of hyperelliptic curves
Authors:
Ignacio Barros and Scott Mullane; with an appendix by Irene Schwarz
Journal:
J. Algebraic Geom.
DOI:
https://doi.org/10.1090/jag/843
Published electronically:
April 15, 2025
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We study the birational geometry of the moduli spaces of hyperelliptic curves with marked points. We show that these moduli spaces have non-$\mathbb {Q}$-factorial singularities. We complete the Kodaira classification by proving that these spaces have Kodaira dimension $4g+3$ when the number of markings is $4g+6$ and are of general type when the number of markings is $n\geq 4g+7$. Similarly, we consider the natural finite cover given by ordering the Weierstrass points. In this case, we provide a full Kodaira classification showing that the Kodaira dimension is negative when $n\leq 3$, one when $n=4$, and of general type when $n\geq 5$. For this, we carry out a singularity analysis of ordered and unordered pointed Hurwitz spaces. We show that the ordered space has canonical singularities and the unordered space has noncanonical singularities. We describe all noncanonical points and show that pluricanonical forms defined on the full regular locus extend to any resolution. Further, we provide a full classification of the structure of the pseudo-effective cone of Cartier divisors for the moduli space of hyperelliptic curves with marked points. We show the cone is nonpolyhedral when the number of markings is at least two and polyhedral in the remaining cases.
References
- Dan Abramovich, Alessio Corti, and Angelo Vistoli, Twisted bundles and admissible covers, Comm. Algebra 31 (2003), no. 8, 3547–3618. Special issue in honor of Steven L. Kleiman. MR 2007376, DOI 10.1081/AGB-120022434
- Daniele Agostini and Ignacio Barros, Pencils on surfaces with normal crossings and the Kodaira dimension of $\overline {\cal M}_{g,n}$, Forum Math. Sigma 9 (2021), Paper No. e31, 22. MR 4247637, DOI 10.1017/fms.2021.28
- Florin Ambro, On minimal log discrepancies, Math. Res. Lett. 6 (1999), no. 5-6, 573–580. MR 1739216, DOI 10.4310/MRL.1999.v6.n5.a10
- Enrico Arbarello and Maurizio Cornalba, The Picard groups of the moduli spaces of curves, Topology 26 (1987), no. 2, 153–171. MR 895568, DOI 10.1016/0040-9383(87)90056-5
- Enrico Arbarello, Maurizio Cornalba, and Phillip A. Griffiths, Geometry of algebraic curves. Volume II, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 268, Springer, Heidelberg, 2011. With a contribution by Joseph Daniel Harris. MR 2807457, DOI 10.1007/978-3-540-69392-5
- Ignacio Barros and Scott Mullane, Two moduli spaces of Calabi-Yau type, Int. Math. Res. Not. IMRN 20 (2021), 15833–15849. MR 4329884, DOI 10.1093/imrn/rnz264
- L. Benzo, Uniruledness of some moduli spaces of stable pointed curves, J. Pure Appl. Algebra 218 (2014), no. 3, 395–404. MR 3124206, DOI 10.1016/j.jpaa.2013.06.010
- Sébastien Boucksom, Jean-Pierre Demailly, Mihai Păun, and Thomas Peternell, The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom. 22 (2013), no. 2, 201–248. MR 3019449, DOI 10.1090/S1056-3911-2012-00574-8
- S. Canning and H. Larson, On the Chow and cohomology rings of moduli spaces of stable curves, J. Eur. Math. Soc. (2024), published online first.
- Dawei Chen and Izzet Coskun, Extremal effective divisors on $\overline {\scr {M}}_{1,n}$, Math. Ann. 359 (2014), no. 3-4, 891–908. MR 3231020, DOI 10.1007/s00208-014-1027-5
- A. Clebsch, Zur Theorie der Riemann’schen Fläche, Math. Ann. 6 (1873), no. 2, 216–230 (German). MR 1509816, DOI 10.1007/BF01443193
- Maurizio Cornalba, The Picard group of the moduli stack of stable hyperelliptic curves, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 18 (2007), no. 1, 109–115. MR 2314467, DOI 10.4171/RLM/483
- Maurizio Cornalba and Joe Harris, Divisor classes associated to families of stable varieties, with applications to the moduli space of curves, Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 3, 455–475. MR 974412
- Steven Diaz, A bound on the dimensions of complete subvarieties of ${\cal M}_{g}$, Duke Math. J. 51 (1984), no. 2, 405–408. MR 747872, DOI 10.1215/S0012-7094-84-05119-6
- Dan Edidin and Zhengning Hu, Chow classes of divisors on stacks of pointed hyperelliptic curves, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 25 (2024), no. 1, 217–240. MR 4732638, DOI 10.2422/2036-2145.202204_{0}01
- C. Faber and R. Pandharipande, Relative maps and tautological classes, J. Eur. Math. Soc. (JEMS) 7 (2005), no. 1, 13–49. MR 2120989, DOI 10.4171/JEMS/20
- Gavril Farkas, Koszul divisors on moduli spaces of curves, Amer. J. Math. 131 (2009), no. 3, 819–867. MR 2530855, DOI 10.1353/ajm.0.0053
- Gavril Farkas and Katharina Ludwig, The Kodaira dimension of the moduli space of Prym varieties, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 3, 755–795. MR 2639318, DOI 10.4171/JEMS/214
- Gavril Farkas and Scott Mullane, On the Kodaira dimension of Hurwitz spaces, Math. Z. 300 (2022), no. 4, 3417–3432. MR 4395098, DOI 10.1007/s00209-021-02882-9
- Gavril Farkas and Mihnea Popa, Effective divisors on $\overline {\scr M}_g$, curves on $K3$ surfaces, and the slope conjecture, J. Algebraic Geom. 14 (2005), no. 2, 241–267. MR 2123229, DOI 10.1090/S1056-3911-04-00392-3
- Gavril Farkas and Alessandro Verra, The classification of universal Jacobians over the moduli space of curves, Comment. Math. Helv. 88 (2013), no. 3, 587–611. MR 3093504, DOI 10.4171/CMH/297
- Gerard van der Geer and Alexis Kouvidakis, The Hodge bundle on Hurwitz spaces, Pure Appl. Math. Q. 7 (2011), no. 4, Special Issue: In memory of Eckart Viehweg, 1297–1307. MR 2918162, DOI 10.4310/PAMQ.2011.v7.n4.a10
- T. Graber and R. Pandharipande, Constructions of nontautological classes on moduli spaces of curves, Michigan Math. J. 51 (2003), no. 1, 93–109. MR 1960923, DOI 10.1307/mmj/1049832895
- V. Gritsenko, K. Hulek, and G. K. Sankaran, Moduli of K3 surfaces and irreducible symplectic manifolds, Handbook of moduli. Vol. I, Adv. Lect. Math. (ALM), vol. 24, Int. Press, Somerville, MA, 2013, pp. 459–526. MR 3184170
- Joe Harris and David Mumford, On the Kodaira dimension of the moduli space of curves, Invent. Math. 67 (1982), no. 1, 23–88. With an appendix by William Fulton. MR 664324, DOI 10.1007/BF01393371
- A. Hurwitz, Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1891), no. 1, 1–60 (German). MR 1510692, DOI 10.1007/BF01199469
- Tyler J. Jarvis, Ralph Kaufmann, and Takashi Kimura, Pointed admissible $G$-covers and $G$-equivariant cohomological field theories, Compos. Math. 141 (2005), no. 4, 926–978. MR 2148194, DOI 10.1112/S0010437X05001284
- M. M. Kapranov, Veronese curves and Grothendieck-Knudsen moduli space $\overline M_{0,n}$, J. Algebraic Geom. 2 (1993), no. 2, 239–262. MR 1203685
- Yujiro Kawamata, The Kodaira dimension of certain fiber spaces, Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), no. 10, 406–408. MR 559042
- Sean Keel, Intersection theory of moduli space of stable $n$-pointed curves of genus zero, Trans. Amer. Math. Soc. 330 (1992), no. 2, 545–574. MR 1034665, DOI 10.1090/S0002-9947-1992-1034665-0
- Seán Keel and James McKernan, Contractible extremal rays on $\overline M_{0,n}$, Handbook of moduli. Vol. II, Adv. Lect. Math. (ALM), vol. 25, Int. Press, Somerville, MA, 2013, pp. 115–130. MR 3184175
- János Kollár, Singularities of pairs, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 221–287. MR 1492525, DOI 10.1090/pspum/062.1/1492525
- János Kollár, Singularities of the minimal model program, Cambridge Tracts in Mathematics, vol. 200, Cambridge University Press, Cambridge, 2013. With a collaboration of Sándor Kovács. MR 3057950, DOI 10.1017/CBO9781139547895
- Adam Logan, The Kodaira dimension of moduli spaces of curves with marked points, Amer. J. Math. 125 (2003), no. 1, 105–138. MR 1953519
- M. Lorenz and J. Pathak, On Cohen-Macaulay rings of invariants, J. Algebra 245 (2001), no. 1, 247–264. MR 1868191, DOI 10.1006/jabr.2001.8900
- Katharina Ludwig, On the geometry of the moduli space of spin curves, J. Algebraic Geom. 19 (2010), no. 1, 133–171. MR 2551759, DOI 10.1090/S1056-3911-09-00505-0
- Han-Bom Moon, Mori’s program for $\overline {M}_{0,7}$ with symmetric divisors, Canad. J. Math. 69 (2017), no. 3, 613–649. MR 3679690, DOI 10.4153/CJM-2015-059-x
- Scott Mullane, Non-polyhedral effective cones from the moduli space of curves, Trans. Amer. Math. Soc. 374 (2021), no. 9, 6397–6415. MR 4302164, DOI 10.1090/tran/8365
- Shinnosuke Okawa, On images of Mori dream spaces, Math. Ann. 364 (2016), no. 3-4, 1315–1342. MR 3466868, DOI 10.1007/s00208-015-1245-5
- David Prill, Local classification of quotients of complex manifolds by discontinuous groups, Duke Math. J. 34 (1967), 375–386. MR 210944
- B. Riemann, Theorie der Abel’schen Functionen, J. Reine Angew. Math. 54 (1857), 115–155 (German). MR 1579035, DOI 10.1515/crll.1857.54.115
- Miles Reid, Canonical $3$-folds, Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff & Noordhoff, Alphen aan den Rijn—Germantown, Md., 1980, pp. 273–310. MR 605348
- William F. Rulla, Effective cones of quotients of moduli spaces of stable $n$-pointed curves of genus zero, Trans. Amer. Math. Soc. 358 (2006), no. 7, 3219–3237. MR 2216265, DOI 10.1090/S0002-9947-06-03851-7
- Federico Scavia, Rational Picard group of moduli of pointed hyperelliptic curves, Int. Math. Res. Not. IMRN 21 (2020), 8027–8056. MR 4184614, DOI 10.1093/imrn/rnaa003
- Johannes Schmitt and Jason van Zelm, Intersections of loci of admissible covers with tautological classes, Selecta Math. (N.S.) 26 (2020), no. 5, Paper No. 79, 69. MR 4177576, DOI 10.1007/s00029-020-00603-4
- The Stacks Project Authors, The Stacks Project, 2020, https://stacks.math.columbia.edu.
- Kenji Ueno, Classification theory of algebraic varieties and compact complex spaces, Lecture Notes in Mathematics, Vol. 439, Springer-Verlag, Berlin-New York, 1975. Notes written in collaboration with P. Cherenack. MR 506253
- Eckart Viehweg, Canonical divisors and the additivity of the Kodaira dimension for morphisms of relative dimension one, Compositio Math. 35 (1977), no. 2, 197–223. MR 569690
- Angelo Vistoli, Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math. 97 (1989), no. 3, 613–670. MR 1005008, DOI 10.1007/BF01388892
References
- Dan Abramovich, Alessio Corti, and Angelo Vistoli, Twisted bundles and admissible covers, Comm. Algebra 31 (2003), no. 8, 3547–3618. Special issue in honor of Steven L. Kleiman. MR 2007376, DOI 10.1081/AGB-120022434
- Daniele Agostini and Ignacio Barros, Pencils on surfaces with normal crossings and the Kodaira dimension of $\overline {\mathcal {M}}_{g,n}$, Forum Math. Sigma 9 (2021), Paper No. e31, 22. MR 4247637, DOI 10.1017/fms.2021.28
- Florin Ambro, On minimal log discrepancies, Math. Res. Lett. 6 (1999), no. 5-6, 573–580. MR 1739216, DOI 10.4310/MRL.1999.v6.n5.a10
- Enrico Arbarello and Maurizio Cornalba, The Picard groups of the moduli spaces of curves, Topology 26 (1987), no. 2, 153–171. MR 895568, DOI 10.1016/0040-9383(87)90056-5
- Enrico Arbarello, Maurizio Cornalba, and Phillip A. Griffiths, Geometry of algebraic curves. Volume II, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 268, Springer, Heidelberg, 2011. With a contribution by Joseph Daniel Harris. MR 2807457, DOI 10.1007/978-3-540-69392-5
- Ignacio Barros and Scott Mullane, Two moduli spaces of Calabi-Yau type, Int. Math. Res. Not. IMRN 20 (2021), 15833–15849. MR 4329884, DOI 10.1093/imrn/rnz264
- L. Benzo, Uniruledness of some moduli spaces of stable pointed curves, J. Pure Appl. Algebra 218 (2014), no. 3, 395–404. MR 3124206, DOI 10.1016/j.jpaa.2013.06.010
- Sébastien Boucksom, Jean-Pierre Demailly, Mihai Păun, and Thomas Peternell, The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom. 22 (2013), no. 2, 201–248. MR 3019449, DOI 10.1090/S1056-3911-2012-00574-8
- S. Canning and H. Larson, On the Chow and cohomology rings of moduli spaces of stable curves, J. Eur. Math. Soc. (2024), published online first.
- Dawei Chen and Izzet Coskun, Extremal effective divisors on $\overline {\mathcal {M}}_{1,n}$, Math. Ann. 359 (2014), no. 3-4, 891–908. MR 3231020, DOI 10.1007/s00208-014-1027-5
- A. Clebsch, Zur Theorie der Riemann’schen Fläche, Math. Ann. 6 (1873), no. 2, 216–230 (German). MR 1509816, DOI 10.1007/BF01443193
- Maurizio Cornalba, The Picard group of the moduli stack of stable hyperelliptic curves, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 18 (2007), no. 1, 109–115. MR 2314467, DOI 10.4171/RLM/483
- Maurizio Cornalba and Joe Harris, Divisor classes associated to families of stable varieties, with applications to the moduli space of curves, Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 3, 455–475. MR 974412
- Steven Diaz, A bound on the dimensions of complete subvarieties of ${\mathcal {M}}_{g}$, Duke Math. J. 51 (1984), no. 2, 405–408. MR 747872, DOI 10.1215/S0012-7094-84-05119-6
- Dan Edidin and Zhengning Hu, Chow classes of divisors on stacks of pointed hyperelliptic curves, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 25 (2024), no. 1, 217–240. MR 4732638, DOI 10.2422/2036-2145.202204_001
- C. Faber and R. Pandharipande, Relative maps and tautological classes, J. Eur. Math. Soc. (JEMS) 7 (2005), no. 1, 13–49. MR 2120989, DOI 10.4171/JEMS/20
- Gavril Farkas, Koszul divisors on moduli spaces of curves, Amer. J. Math. 131 (2009), no. 3, 819–867. MR 2530855, DOI 10.1353/ajm.0.0053
- Gavril Farkas and Katharina Ludwig, The Kodaira dimension of the moduli space of Prym varieties, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 3, 755–795. MR 2639318, DOI 10.4171/JEMS/214
- Gavril Farkas and Scott Mullane, On the Kodaira dimension of Hurwitz spaces, Math. Z. 300 (2022), no. 4, 3417–3432. MR 4395098, DOI 10.1007/s00209-021-02882-9
- Gavril Farkas and Mihnea Popa, Effective divisors on $\overline {\mathcal {M}}_g$, curves on $K3$ surfaces, and the slope conjecture, J. Algebraic Geom. 14 (2005), no. 2, 241–267. MR 2123229, DOI 10.1090/S1056-3911-04-00392-3
- Gavril Farkas and Alessandro Verra, The classification of universal Jacobians over the moduli space of curves, Comment. Math. Helv. 88 (2013), no. 3, 587–611. MR 3093504, DOI 10.4171/CMH/297
- Gerard van der Geer and Alexis Kouvidakis, The Hodge bundle on Hurwitz spaces, Pure Appl. Math. Q. 7 (2011), no. 4, Special Issue: In memory of Eckart Viehweg, 1297–1307. MR 2918162, DOI 10.4310/PAMQ.2011.v7.n4.a10
- T. Graber and R. Pandharipande, Constructions of nontautological classes on moduli spaces of curves, Michigan Math. J. 51 (2003), no. 1, 93–109. MR 1960923, DOI 10.1307/mmj/1049832895
- V. Gritsenko, K. Hulek, and G. K. Sankaran, Moduli of K3 surfaces and irreducible symplectic manifolds, Handbook of moduli. Vol. I, Adv. Lect. Math. (ALM), vol. 24, Int. Press, Somerville, MA, 2013, pp. 459–526. MR 3184170
- Joe Harris and David Mumford, On the Kodaira dimension of the moduli space of curves, Invent. Math. 67 (1982), no. 1, 23–88. With an appendix by William Fulton. MR 664324, DOI 10.1007/BF01393371
- A. Hurwitz, Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1891), no. 1, 1–60 (German). MR 1510692, DOI 10.1007/BF01199469
- Tyler J. Jarvis, Ralph Kaufmann, and Takashi Kimura, Pointed admissible $G$-covers and $G$-equivariant cohomological field theories, Compos. Math. 141 (2005), no. 4, 926–978. MR 2148194, DOI 10.1112/S0010437X05001284
- M. M. Kapranov, Veronese curves and Grothendieck-Knudsen moduli space $\overline M_{0,n}$, J. Algebraic Geom. 2 (1993), no. 2, 239–262. MR 1203685
- Yujiro Kawamata, The Kodaira dimension of certain fiber spaces, Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), no. 10, 406–408. MR 559042
- Sean Keel, Intersection theory of moduli space of stable $n$-pointed curves of genus zero, Trans. Amer. Math. Soc. 330 (1992), no. 2, 545–574. MR 1034665, DOI 10.2307/2153922
- Seán Keel and James McKernan, Contractible extremal rays on $\overline M_{0,n}$, Handbook of moduli. Vol. II, Adv. Lect. Math. (ALM), vol. 25, Int. Press, Somerville, MA, 2013, pp. 115–130. MR 3184175
- János Kollár, Singularities of pairs, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 221–287. MR 1492525, DOI 10.1090/pspum/062.1/1492525
- János Kollár, Singularities of the minimal model program, Cambridge Tracts in Mathematics, vol. 200, Cambridge University Press, Cambridge, 2013. With a collaboration of Sándor Kovács. MR 3057950, DOI 10.1017/CBO9781139547895
- Adam Logan, The Kodaira dimension of moduli spaces of curves with marked points, Amer. J. Math. 125 (2003), no. 1, 105–138. MR 1953519
- M. Lorenz and J. Pathak, On Cohen-Macaulay rings of invariants, J. Algebra 245 (2001), no. 1, 247–264. MR 1868191, DOI 10.1006/jabr.2001.8900
- Katharina Ludwig, On the geometry of the moduli space of spin curves, J. Algebraic Geom. 19 (2010), no. 1, 133–171. MR 2551759, DOI 10.1090/S1056-3911-09-00505-0
- Han-Bom Moon, Mori’s program for $\overline {M}_{0,7}$ with symmetric divisors, Canad. J. Math. 69 (2017), no. 3, 613–649. MR 3679690, DOI 10.4153/CJM-2015-059-x
- Scott Mullane, Non-polyhedral effective cones from the moduli space of curves, Trans. Amer. Math. Soc. 374 (2021), no. 9, 6397–6415. MR 4302164, DOI 10.1090/tran/8365
- Shinnosuke Okawa, On images of Mori dream spaces, Math. Ann. 364 (2016), no. 3-4, 1315–1342. MR 3466868, DOI 10.1007/s00208-015-1245-5
- David Prill, Local classification of quotients of complex manifolds by discontinuous groups, Duke Math. J. 34 (1967), 375–386. MR 210944
- B. Riemann, Theorie der Abel’schen Functionen, J. Reine Angew. Math. 54 (1857), 115–155 (German). MR 1579035, DOI 10.1515/crll.1857.54.115
- Miles Reid, Canonical $3$-folds, Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff & Noordhoff, Alphen aan den Rijn—Germantown, Md., 1980, pp. 273–310. MR 605348
- William F. Rulla, Effective cones of quotients of moduli spaces of stable $n$-pointed curves of genus zero, Trans. Amer. Math. Soc. 358 (2006), no. 7, 3219–3237. MR 2216265, DOI 10.1090/S0002-9947-06-03851-7
- Federico Scavia, Rational Picard group of moduli of pointed hyperelliptic curves, Int. Math. Res. Not. IMRN 21 (2020), 8027–8056. MR 4184614, DOI 10.1093/imrn/rnaa003
- Johannes Schmitt and Jason van Zelm, Intersections of loci of admissible covers with tautological classes, Selecta Math. (N.S.) 26 (2020), no. 5, Paper No. 79, 69. MR 4177576, DOI 10.1007/s00029-020-00603-4
- The Stacks Project Authors, The Stacks Project, 2020, https://stacks.math.columbia.edu.
- Kenji Ueno, Classification theory of algebraic varieties and compact complex spaces, Lecture Notes in Mathematics, Vol. 439, Springer-Verlag, Berlin-New York, 1975. Notes written in collaboration with P. Cherenack. MR 506253
- Eckart Viehweg, Canonical divisors and the additivity of the Kodaira dimension for morphisms of relative dimension one, Compositio Math. 35 (1977), no. 2, 197–223. MR 569690
- Angelo Vistoli, Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math. 97 (1989), no. 3, 613–670. MR 1005008, DOI 10.1007/BF01388892
Additional Information
Ignacio Barros
Affiliation:
Department of Mathematics, Universiteit Antwerpen, 2020 Antwerpen, Belgium
MR Author ID:
1276538
ORCID:
0000-0002-7729-9413
Email:
ignacio.barros@uantwerpen.be
Scott Mullane
Affiliation:
School of Mathematics and Statistics, University of Melbourne, VIC 3010, Australia
MR Author ID:
1215575
Email:
mullanes@unimelb.edu.au
Irene Schwarz
Affiliation:
Departement Mathematik, ETH Zürich, 8092 Zürich, Switzerland
MR Author ID:
1217299
Received by editor(s):
October 3, 2022
Received by editor(s) in revised form:
October 1, 2023
Published electronically:
April 15, 2025
Additional Notes:
The first author was supported by the ERC Synergy Grant ERC-2020-SyG-854361-HyperK, the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SFB-TRR 358/1 2023 – 491392403, and the Research Foundation Flanders (FWO) within the framework of the Odysseus program project number G0D9323N. The second author was supported by the Alexander von Humboldt Foundation, ERC Advanced Grant SYZYGY, and DECRA Grant DE220100918 from the Australian Research Council.
Article copyright:
© Copyright 2025
University Press, Inc.