Structure theorem, injectivity theorem and vanishing theorem for the cohomology groups of pseudo-effective line bundles
Authors:
Chenghao Qing and Xiangyu Zhou
Journal:
J. Algebraic Geom.
DOI:
https://doi.org/10.1090/jag/853
Published electronically:
June 25, 2025
Full-text PDF
Abstract |
References |
Additional Information
Abstract: In this paper, we establish a structure theorem and prove an isomorphism theorem for cohomology groups of pseudo-effective line bundles over holomorphically convex manifolds, which generalizes the results of Takegoshi, Demailly-Peternell-Schneider, Meng-Zhou, and Wu. As applications, we first give an answer to a question proposed by Matsumura, and establish an injectivity theorem for purely log terminal pairs generalized to pseudo-effective line bundles with transcendental singularities, and then we obtain a Kollár-Nadel-Ohsawa type vanishing theorem which extends the results of Matsumura, Fujino, Meng-Zhou, and others.
References
- Aldo Andreotti and Arnold Kas, Duality on complex spaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 27 (1973), 187–263. MR 425160
- JunYan Cao, Jean-Pierre Demailly, and Shin-ichi Matsumura, A general extension theorem for cohomology classes on non reduced analytic subspaces, Sci. China Math. 60 (2017), no. 6, 949–962. MR 3647124, DOI 10.1007/s11425-017-9066-0
- Junyan Cao and Mihai Păun, $\partial \bar \partial$-lemmas and a conjecture of O. Fujino, Preprint, arXiv:2303.16239, 2023.
- Tsz On Mario Chan and Young-Jun Choi, On an injectivity theorem for log-canonical pairs with analytic adjoint ideal sheaves, Trans. Amer. Math. Soc. 376 (2023), no. 12, 8337–8381. MR 4669299, DOI 10.1090/tran/8935
- Tsz On Mario Chan, Young-Jun Choi, and Shin-ichi Matsumura, An injectivity theorem on snc compact Kähler spaces: an application of the theory of harmonic integrals on log-canonical centers via adjoint ideal sheaves, Preprint, arXiv:2307.12025, 2023.
- Jean-Pierre Demailly, Estimations $L^{2}$ pour l’opérateur $\bar \partial$ d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète, Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 3, 457–511 (French). MR 690650
- Jean-Pierre Demailly, Regularization of closed positive currents of type $(1,1)$ by the flow of a Chern connection, Contributions to complex analysis and analytic geometry, Aspects Math., E26, Friedr. Vieweg, Braunschweig, 1994, pp. 105–126. MR 1319346
- Jean-Pierre Demailly, Analytic methods in algebraic geometry, Surveys of Modern Mathematics, vol. 1, International Press, Somerville, MA; Higher Education Press, Beijing, 2012. MR 2978333
- Jean-Pierre Demailly, Complex analytic and differential geometry, 2012. http://www-fourier.ujf-grenoble.fr/~demailly/books.html
- Jean-Pierre Demailly, Thomas Peternell, and Michael Schneider, Pseudo-effective line bundles on compact Kähler manifolds, Internat. J. Math. 12 (2001), no. 6, 689–741. MR 1875649, DOI 10.1142/S0129167X01000861
- Harold Donnelly and Charles Fefferman, $L^{2}$-cohomology and index theorem for the Bergman metric, Ann. of Math. (2) 118 (1983), no. 3, 593–618. MR 727705, DOI 10.2307/2006983
- Harold Donnelly and Frederico Xavier, On the differential form spectrum of negatively curved Riemannian manifolds, Amer. J. Math. 106 (1984), no. 1, 169–185. MR 729759, DOI 10.2307/2374434
- Ichiro Enoki, Kawamata-Viehweg vanishing theorem for compact Kähler manifolds, Einstein metrics and Yang-Mills connections (Sanda, 1990) Lecture Notes in Pure and Appl. Math., vol. 145, Dekker, New York, 1993, pp. 59–68. MR 1215279
- Osamu Fujino, A transcendental approach to Kollár’s injectivity theorem, Osaka J. Math. 49 (2012), no. 3, 833–852. MR 2993068
- Osamu Fujino, A transcendental approach to Kollár’s injectivity theorem II, J. Reine Angew. Math. 681 (2013), 149–174. MR 3181493, DOI 10.1515/crelle-2012-0036
- Osamu Fujino, On semipositivity, injectivity and vanishing theorems, Hodge theory and $L^2$-analysis, Adv. Lect. Math. (ALM), vol. 39, Int. Press, Somerville, MA, 2017, pp. 245–282. MR 3751293
- Osamu Fujino, Kollár-Nadel type vanishing theorem, Southeast Asian Bull. Math. 42 (2018), no. 5, 643–646. MR 3888433
- Osamu Fujino and Shin-ichi Matsumura, Injectivity theorem for pseudo-effective line bundles and its applications, Trans. Amer. Math. Soc. Ser. B 8 (2021), 849–884. MR 4324359, DOI 10.1090/btran/86
- Hans Grauert and Reinhold Remmert, Coherent analytic sheaves, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 265, Springer-Verlag, Berlin, 1984. MR 755331, DOI 10.1007/978-3-642-69582-7
- Hans Grauert and Reinhold Remmert, Theory of Stein spaces, Classics in Mathematics, Springer-Verlag, Berlin, 2004. Translated from the German by Alan Huckleberry; Reprint of the 1979 translation. MR 2029201, DOI 10.1007/978-3-642-18921-0
- Qi’an Guan and Xiangyu Zhou, A proof of Demailly’s strong openness conjecture, Ann. of Math. (2) 182 (2015), no. 2, 605–616. MR 3418526, DOI 10.4007/annals.2015.182.2.5
- Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1965. MR 180696
- Lars Hörmander, An introduction to complex analysis in several variables, 3rd ed., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990. MR 1045639
- Daniel Huybrechts, Complex geometry, Universitext, Springer-Verlag, Berlin, 2005. An introduction. MR 2093043
- János Kollár, Higher direct images of dualizing sheaves. I, Ann. of Math. (2) 123 (1986), no. 1, 11–42. MR 825838, DOI 10.2307/1971351
- János Kollár, Higher direct images of dualizing sheaves. II, Ann. of Math. (2) 124 (1986), no. 1, 171–202. MR 847955, DOI 10.2307/1971390
- Shin-ichi Matsumura, A vanishing theorem of Kollár-Ohsawa type, Math. Ann. 366 (2016), no. 3-4, 1451–1465. MR 3563242, DOI 10.1007/s00208-016-1371-8
- Shin-ichi Matsumura, An injectivity theorem with multiplier ideal sheaves of singular metrics with transcendental singularities, J. Algebraic Geom. 27 (2018), no. 2, 305–337. MR 3764278, DOI 10.1090/jag/687
- Shin-ichi Matsumura, A transcendental approach to injectivity theorem for log canonical pairs, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 19 (2019), no. 1, 311–334. MR 3923849
- Shin-ichi Matsumura, Injectivity theorems with multiplier ideal sheaves for higher direct images under Kähler morphisms, Algebr. Geom. 9 (2022), no. 2, 122–158. MR 4429015, DOI 10.14231/ag-2022-005
- Xiankui Meng and Xiangyu Zhou, Pseudo-effective line bundles over holomorphically convex manifolds, J. Algebraic Geom. 28 (2019), no. 1, 169–200. MR 3875365, DOI 10.1090/jag/714
- Xiankui Meng and Xiangyu Zhou, A generalization of Nadel vanishing theorem, Preprint, arXiv:2011.09637, 2020.
- Alan Michael Nadel, Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature, Ann. of Math. (2) 132 (1990), no. 3, 549–596. MR 1078269, DOI 10.2307/1971429
- Takeo Ohsawa, Vanishing theorems on complete Kähler manifolds, Publ. Res. Inst. Math. Sci. 20 (1984), no. 1, 21–38. MR 736089, DOI 10.2977/prims/1195181825
- Takeo Ohsawa, On the extension of $L^2$ holomorphic functions. III. Negligible weights, Math. Z. 219 (1995), no. 2, 215–225. MR 1337216, DOI 10.1007/BF02572360
- Takeo Ohsawa, On a curvature condition that implies a cohomology injectivity theorem of Kollár-Skoda type, Publ. Res. Inst. Math. Sci. 41 (2005), no. 3, 565–577. MR 2153535
- Takeo Ohsawa and Kensh\B{o} Takegoshi, On the extension of $L^2$ holomorphic functions, Math. Z. 195 (1987), no. 2, 197–204. MR 892051, DOI 10.1007/BF01166457
- David Prill, The divisor class groups of some rings of holomorphic functions, Math. Z. 121 (1971), 58–80. MR 296350, DOI 10.1007/BF01110367
- Kensh\B{o} Takegoshi, Higher direct images of canonical sheaves tensorized with semi-positive vector bundles by proper Kähler morphisms, Math. Ann. 303 (1995), no. 3, 389–416. MR 1354997, DOI 10.1007/BF01460997
- Kensho Takegoshi, On cohomology groups of nef line bundles tensorized with multiplier ideal sheaves on compact Kähler manifolds, Osaka J. Math. 34 (1997), no. 4, 783–802. MR 1618661
- Xiaojun Wu, On the hard Lefschetz theorem for pseudoeffective line bundles, Internat. J. Math. 32 (2021), no. 6, Paper No. 2150035, 25. MR 4270687, DOI 10.1142/S0129167X2150035X
- Xiangyu Zhou and Langfeng Zhu, Regularization of quasi-plurisubharmonic functions on complex manifolds, Sci. China Math. 61 (2018), no. 7, 1163–1174. MR 3817169, DOI 10.1007/s11425-018-9289-4
- Xiangyu Zhou and Langfeng Zhu, Extension of cohomology classes and holomorphic sections defined on subvarieties, J. Algebraic Geom. 31 (2022), no. 1, 137–179. MR 4372411
References
- Aldo Andreotti and Arnold Kas, Duality on complex spaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 27 (1973), 187–263. MR 425160
- JunYan Cao, Jean-Pierre Demailly, and Shin-ichi Matsumura, A general extension theorem for cohomology classes on non reduced analytic subspaces, Sci. China Math. 60 (2017), no. 6, 949–962. MR 3647124, DOI 10.1007/s11425-017-9066-0
- Junyan Cao and Mihai Păun, $\partial \bar \partial$-lemmas and a conjecture of O. Fujino, Preprint, arXiv:2303.16239, 2023.
- Tsz On Mario Chan and Young-Jun Choi, On an injectivity theorem for log-canonical pairs with analytic adjoint ideal sheaves, Trans. Amer. Math. Soc. 376 (2023), no. 12, 8337–8381. MR 4669299, DOI 10.1090/tran/8935
- Tsz On Mario Chan, Young-Jun Choi, and Shin-ichi Matsumura, An injectivity theorem on snc compact Kähler spaces: an application of the theory of harmonic integrals on log-canonical centers via adjoint ideal sheaves, Preprint, arXiv:2307.12025, 2023.
- Jean-Pierre Demailly, Estimations $L^{2}$ pour l’opérateur $\bar \partial$ d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète, Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 3, 457–511 (French). MR 690650
- Jean-Pierre Demailly, Regularization of closed positive currents of type $(1,1)$ by the flow of a Chern connection, Contributions to complex analysis and analytic geometry, Aspects Math., E26, Friedr. Vieweg, Braunschweig, 1994, pp. 105–126. MR 1319346
- Jean-Pierre Demailly, Analytic methods in algebraic geometry, Surveys of Modern Mathematics, vol. 1, International Press, Somerville, MA; Higher Education Press, Beijing, 2012. MR 2978333
- Jean-Pierre Demailly, Complex analytic and differential geometry, 2012. http://www-fourier.ujf-grenoble.fr/~demailly/books.html
- Jean-Pierre Demailly, Thomas Peternell, and Michael Schneider, Pseudo-effective line bundles on compact Kähler manifolds, Internat. J. Math. 12 (2001), no. 6, 689–741. MR 1875649, DOI 10.1142/S0129167X01000861
- Harold Donnelly and Charles Fefferman, $L^{2}$-cohomology and index theorem for the Bergman metric, Ann. of Math. (2) 118 (1983), no. 3, 593–618. MR 727705, DOI 10.2307/2006983
- Harold Donnelly and Frederico Xavier, On the differential form spectrum of negatively curved Riemannian manifolds, Amer. J. Math. 106 (1984), no. 1, 169–185. MR 729759, DOI 10.2307/2374434
- Ichiro Enoki, Kawamata-Viehweg vanishing theorem for compact Kähler manifolds, Einstein metrics and Yang-Mills connections (Sanda, 1990) Lecture Notes in Pure and Appl. Math., vol. 145, Dekker, New York, 1993, pp. 59–68. MR 1215279
- Osamu Fujino, A transcendental approach to Kollár’s injectivity theorem, Osaka J. Math. 49 (2012), no. 3, 833–852. MR 2993068
- Osamu Fujino, A transcendental approach to Kollár’s injectivity theorem II, J. Reine Angew. Math. 681 (2013), 149–174. MR 3181493, DOI 10.1515/crelle-2012-0036
- Osamu Fujino, On semipositivity, injectivity and vanishing theorems, Hodge theory and $L^2$-analysis, Adv. Lect. Math. (ALM), vol. 39, Int. Press, Somerville, MA, 2017, pp. 245–282. MR 3751293
- Osamu Fujino, Kollár-Nadel type vanishing theorem, Southeast Asian Bull. Math. 42 (2018), no. 5, 643–646. MR 3888433
- Osamu Fujino and Shin-ichi Matsumura, Injectivity theorem for pseudo-effective line bundles and its applications, Trans. Amer. Math. Soc. Ser. B 8 (2021), 849–884. MR 4324359, DOI 10.1090/btran/86
- Hans Grauert and Reinhold Remmert, Coherent analytic sheaves, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 265, Springer-Verlag, Berlin, 1984. MR 755331, DOI 10.1007/978-3-642-69582-7
- Hans Grauert and Reinhold Remmert, Theory of Stein spaces, Classics in Mathematics, Springer-Verlag, Berlin, 2004. Translated from the German by Alan Huckleberry; Reprint of the 1979 translation. MR 2029201, DOI 10.1007/978-3-642-18921-0
- Qi’an Guan and Xiangyu Zhou, A proof of Demailly’s strong openness conjecture, Ann. of Math. (2) 182 (2015), no. 2, 605–616. MR 3418526, DOI 10.4007/annals.2015.182.2.5
- Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1965. MR 180696
- Lars Hörmander, An introduction to complex analysis in several variables, 3rd ed., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990. MR 1045639
- Daniel Huybrechts, Complex geometry, Universitext, Springer-Verlag, Berlin, 2005. An introduction. MR 2093043
- János Kollár, Higher direct images of dualizing sheaves. I, Ann. of Math. (2) 123 (1986), no. 1, 11–42. MR 825838, DOI 10.2307/1971351
- János Kollár, Higher direct images of dualizing sheaves. II, Ann. of Math. (2) 124 (1986), no. 1, 171–202. MR 847955, DOI 10.2307/1971390
- Shin-ichi Matsumura, A vanishing theorem of Kollár-Ohsawa type, Math. Ann. 366 (2016), no. 3-4, 1451–1465. MR 3563242, DOI 10.1007/s00208-016-1371-8
- Shin-ichi Matsumura, An injectivity theorem with multiplier ideal sheaves of singular metrics with transcendental singularities, J. Algebraic Geom. 27 (2018), no. 2, 305–337. MR 3764278, DOI 10.1090/jag/687
- Shin-ichi Matsumura, A transcendental approach to injectivity theorem for log canonical pairs, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 19 (2019), no. 1, 311–334. MR 3923849
- Shin-ichi Matsumura, Injectivity theorems with multiplier ideal sheaves for higher direct images under Kähler morphisms, Algebr. Geom. 9 (2022), no. 2, 122–158. MR 4429015, DOI 10.14231/ag-2022-005
- Xiankui Meng and Xiangyu Zhou, Pseudo-effective line bundles over holomorphically convex manifolds, J. Algebraic Geom. 28 (2019), no. 1, 169–200. MR 3875365, DOI 10.1090/jag/714
- Xiankui Meng and Xiangyu Zhou, A generalization of Nadel vanishing theorem, Preprint, arXiv:2011.09637, 2020.
- Alan Michael Nadel, Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature, Ann. of Math. (2) 132 (1990), no. 3, 549–596. MR 1078269, DOI 10.2307/1971429
- Takeo Ohsawa, Vanishing theorems on complete Kähler manifolds, Publ. Res. Inst. Math. Sci. 20 (1984), no. 1, 21–38. MR 736089, DOI 10.2977/prims/1195181825
- Takeo Ohsawa, On the extension of $L^2$ holomorphic functions. III. Negligible weights, Math. Z. 219 (1995), no. 2, 215–225. MR 1337216, DOI 10.1007/BF02572360
- Takeo Ohsawa, On a curvature condition that implies a cohomology injectivity theorem of Kollár-Skoda type, Publ. Res. Inst. Math. Sci. 41 (2005), no. 3, 565–577. MR 2153535
- Takeo Ohsawa and Kenshō Takegoshi, On the extension of $L^2$ holomorphic functions, Math. Z. 195 (1987), no. 2, 197–204. MR 892051, DOI 10.1007/BF01166457
- David Prill, The divisor class groups of some rings of holomorphic functions, Math. Z. 121 (1971), 58–80. MR 296350, DOI 10.1007/BF01110367
- Kenshō Takegoshi, Higher direct images of canonical sheaves tensorized with semi-positive vector bundles by proper Kähler morphisms, Math. Ann. 303 (1995), no. 3, 389–416. MR 1354997, DOI 10.1007/BF01460997
- Kensho Takegoshi, On cohomology groups of nef line bundles tensorized with multiplier ideal sheaves on compact Kähler manifolds, Osaka J. Math. 34 (1997), no. 4, 783–802. MR 1618661
- Xiaojun Wu, On the hard Lefschetz theorem for pseudoeffective line bundles, Internat. J. Math. 32 (2021), no. 6, Paper No. 2150035, 25. MR 4270687, DOI 10.1142/S0129167X2150035X
- Xiangyu Zhou and Langfeng Zhu, Regularization of quasi-plurisubharmonic functions on complex manifolds, Sci. China Math. 61 (2018), no. 7, 1163–1174. MR 3817169, DOI 10.1007/s11425-018-9289-4
- Xiangyu Zhou and Langfeng Zhu, Extension of cohomology classes and holomorphic sections defined on subvarieties, J. Algebraic Geom. 31 (2022), no. 1, 137–179. MR 4372411
Additional Information
Chenghao Qing
Affiliation:
Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, People’s Republic of China
Email:
qingchenghao@amss.ac.cn
Xiangyu Zhou
Affiliation:
Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
MR Author ID:
260186
Email:
xyzhou@math.ac.cn
Received by editor(s):
October 1, 2024
Received by editor(s) in revised form:
March 31, 2025, and May 14, 2025
Published electronically:
June 25, 2025
Additional Notes:
The second author was supported by National Key R&D Program of China (No. 2021YFA1003100) and NSFC grant (No. 12288201).
Article copyright:
© Copyright 2025
University Press, Inc.