[An]Andrews G. Andrews, The Theory of Partitions, Addison–Wesley
, 1976.
[Ar]Arnold V. I. Arnold, The cohomology ring of the colored braid group, Mat. Zametki 5 (1969), 227–231
.
[AMRT]Ashplus A. Ash, D. Mumford, M. Rapoport, Y. Tai, Smooth Compactification of Locally Symmetric Spaces, Math. Sci. Press, 1975.
[At]Atiyah M. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982), 1–15
.
[AS]AxelrodSinger S. Axelrod, I. Singer, Chern–Simons perturbation theory II, J. Diff. Geom. 39 (1994), 173–213
.
[BL]BabaiLengyel L. Babai, T. Lengyel, A convergence criterion for recurrent sequences with applications to the partition lattice, Analysis 12 (1992), 109–119
.
[BG]BeilinsonGinzburg A. Beilinson, V. Ginzburg, Infinitesimal structure on moduli space of $G$-bundles, Intl. Math. Res. Notices 4 (1992), 63–74
.
[BS]BilleraSarangarajan L. J. Billera, A. Sarangarajan, The combinatorics of permutation polytopes, in: Formal Power Series and Algebraic Combinatorics, DIMACS Ser. on Discrete Math. Comp. Sci., 24 (1994), 1–25
.
[Bj]Bjorner A. Björner, Subspace arrangements, in: First Europ. Congress of Math. (Paris 1992), v. I, Progress in Math. 119, Birkhauser, 1994, pp. 321–370
.
[Br]JLB:eventails J.–L. Brylinski, Eventails et variétés toriques, in: Séminaire sur les Singularités des Surfaces, Lect. Notes in Math. 777, Springer, 1980, 247–288
.
[Ch]Cheah J. Cheah, The Hodge polynomial of the Fulton–MacPherson compactification of configuration spaces, Amer. J. Math. 118 (1996), 963–977
.
[C]FCohen F. R. Cohen, The homology of $\mathcal C_{n+1}$-spaces, in The Homology of Iterated Loop Spaces, Lect. Notes in Math. 533, Springer, 1976, pp. 207–351
.
[DKh]DanilovKhovanskii V. I. Danilov, A.G. Khovanskii, Newton polyhedra and an algorithm for computing Hodge–Deligne numbers, Math. U.S.S.R. Izvestiya 29 (1987), 279–298
.
[DP]DeCP C. De Concini, C. Procesi, Wonderful models for subspace arrangements, Selecta Math., New ser. 1 (1995), 459–494
.
[De1]Deligne:Hodge P. Deligne, Théorie de Hodge I, II, III, in: Proc. I.C.M. 1970, v. 1, 425–430
; Publ. Math. I.H.E.S. 40 (1971), 5–58
; ibid. 44 (1974), 5–77
.
[De2]Deligne:resume P. Deligne, Resumé des premiers exposés de A. Grothendieck, in: Groupes de Monodromie en Géométrie Algébrique, SGA 7, Lect. Notes in Math. 288, Springer, 1972, pp. 1–24
.
[De3]Deligne:poids P. Deligne, Poids dans la cohomologie des variétés algébriques, in: Proc. I.C.M. 1974, v. 1, 79–85
.
[DL]DolgachevLunts I. Dolgachev, V. Lunts, A character formula for the representation of a Weyl group in the cohomology of the associated toric variety, J. Alg. 168 (1994), 741–772
.
[Du]Durfee A. H. Durfee, Algebraic varieties which are a disjoint union of subvarieties, in: Geometry and Topology: Manifolds, Varieties and Knots, Lect. Notes in Pure Appl. Math. 105, Marcel Dekker, 1987, pp. 99–192
.
[Fa]Fadell E. Fadell, Homotopy groups of configuration spaces and the string problem of Dirac, Duke Math. J. 29 (1962), 231–242
.
[FaN]FadellNeuwirth E. Fadell, L. Neuwirth, Configuration spaces, Math. Scand. 10 (1962), 111–118
.
[FM]FM W. Fulton, R. MacPherson, A compactification of configuration spaces, Ann. Math. 139 (1994), 183–225
.
[GS]GelfandSerganova I. M. Gelfand, V. V. Serganova, Combinatorial geometries and torus strata on homogeneous compact manifolds, Russian Math. Surveys 42:2 (1987), 133–168
.
[Ge]Getzler E. Getzler, Mixed Hodge structures of configuration spaces, q-alg/9510018.
[Gi]Ginzburg V. Ginzburg, Resolution of diagonals and moduli spaces, in: The Moduli Space of Curves, Progress in Math. 129, Birkhauser, 1995, pp. 231–266
.
[Hu]Hu Y. Hu, A compactification of open varieties, math.AG/9910181.
[Ka1]Kapranov:Veronese M. M. Kapranov, Veronese curves and Grothendieck–Knudsen moduli space $\overline {M_{0,n}}$, J. Alg. Geom. 2 (1992), 236–262
.
[Ka2]Kapranov:Chow M. M. Kapranov, Chow quotients of Grassmannians, I, in: I. M. Gelfand Seminar, Adv. in Soviet Math. 16 (1993), 29–111
.
[Ke]Keel S. Keel, Intersection theory of the moduli space of stable $n$-pointed curves, Trans. Amer. Math. Soc. 330 (1992), 545–574
.
[KKMS]Kempfplus G. Kempf, F. Knudsen, D. Mumford, B. Saint-Donat, Toroidal Embeddings I, Lect. Notes in Math. 339, Springer, 1973.
[Ki]Kirwan F. Kirwan, Partial desingularization of quotients of nonsingular varieties and their Betti numbers, Ann. Math. 122 (1985), 41–85
.
[Kn]Knudsen F. Knudsen, Projectivity of the moduli space of stable curves, II: the stacks $M_{g,n}$, Math. Scand. 52 (1983), 161–199
.
[Ko]Kontsevich:Feynman M. Kontsevich, Feynman diagrams and low-dimensional topology, in: First Europ. Congress of Math. (Paris 1992), v. II, Progress in Math. 120, Birkhauser, 1994, pp. 97–121
.
[Kr]Kriz I. Kriz, On the rational homotopy type of configuration spaces, Ann. Math. 139 (1994), 227–237
.
[Le]Lengyel T. Lengyel, On a recurrence involving Stirling numbers, Europ. J. Combin. 5 (1984), 313–321
.
[Lo]Loday J.-L. Loday, Overview on Leibniz algebras, dialgebras and their homology, Fields Inst. Comm. 17, (1997), 91–102
.
[MP]MacPP R. MacPherson, C. Procesi, Making conical compactifications wonderful, Selecta Math., New ser. 4 (1998), 125–137
.
[M]Manin Yu. I. Manin, Generating functions in algebraic geometry and sums over trees, in: The Moduli Space of Curves, Progress in Math. 129, Birkhauser, 1995, pp. 401–417
.
[O]Oda T. Oda, Convex Bodies and Algebraic Geometry, Springer, 1987.
[OT]OrlikTerao P. Orlik, H. Terao, Arrangements of Hyperplanes, Springer, 1992.
[P]Procesi C. Procesi, The toric variety associated to Weyl chambers, in: Mots, M. Lothaire, ed., Hermés, Paris, 1990, pp. 153–161
.
[SP]EIS N. J. A. Sloane, S. Plouffe, The Encyclopedia of Integer Sequences, Acad. Press, 1995.
[Sta1]Stanley R. Stanley, Enumerative Combinatorics, v. 1, Wadsworth & Brooks/Cole, 1986.
[Sta2]Stanley:log-concave R. Stanley, Log-concave and unimodal sequences in algebra, combinatorics and geometry, Ann. New York Acad. Sci. 576 (1989), 500–535
.
[Ste1]Stembridge:Eulerian J. Stembridge, Eulerian numbers, tableaux, and the Betti numbers of a toric variety, Discrete Math. 99 (1992), 307–320
.
[Ste2]Stembridge:reps J. Stembridge, Some permutation representations of Weyl groups associated with the cohomology of toric varieties, Adv. Math. 106 (1994), 244–307
.
[Th]Thurston D. Thurston, Integral Expressions for the Vassiliev Knot Invariants, math.AG/ 9901110.
[Ton]Tonks A. Tonks, Relating the associahedron and the permutohedron, in: Operads, Proceedings of the Renaissance Conferences, Contemp. Math. 202 (1997), 33–36
.
[Tot]Totaro B. Totaro, Configuration spaces of algebraic varieties, Topology 35 (1996), 1057–1067
.
[U]U2 A. Ulyanov, Polydiagonal compactification and the permutahedra, in preparation.