Skip to Main Content
Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911



A characterization of quasi-homogeneous complete intersection singularities

Author: Henrik Vosegaard
Journal: J. Algebraic Geom. 11 (2002), 581-597
Published electronically: March 13, 2002
MathSciNet review: 1894939
Full-text PDF

Abstract | References | Additional Information

Abstract: It is well-known that quasi-homogeneity is characterized by equality of the Milnor and Tjurina numbers for isolated complex analytic hypersurface singularities and for certain low-dimensional singularities. We prove that this characterization extends to any complex isolated complete intersection singularity of positive dimension.

References [Enhancements On Off] (What's this?)

    [BG]BG R.-O. Buchweitz and G.-M. Greuel, The Milnor number and deformations of complex curve singularities, Invent. Math. 58 (1980), 241–281. [G1]G1 G.-M. Greuel, Der Gauß-Manin-Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten, Math. Ann. 214 (1975), 235–266. [G2]G2 G.-M. Greuel, Dualität in der lokalen Kohomologie isolierter Singularitäten, Math. Ann. 250 (1980), 157–173. [G3]G3 G.-M. Greuel, On deformation of curves and a formula of Deligne, Algebraic Geometry, proceedings La Rábida 1981, LNM 961, Springer-Verlag, 1982, pp. 141–168. [GMP]GMP G.-M. Greuel, B. Martin and G. Pfister, Numerische Charakterisierung Quasihomogener Gorenstein-Kurvensingularitäten, Math. Nachr. 124 (1985), 123-131. [L]L E. Looijenga, Isolated singular points on complete intersections, London Math. Soc. LNS 77, Cambridge Univ. Press, 1984. [LS]LS E. Looijenga and J. Steenbrink, Milnor number and Tjurina number of complete intersections, Math. Ann. 271 (1985), 121–124. [Sa]Sa K. Saito, Quasihomogene isolierte Singularitäten von Hyperflächen, Invent. Math. 14 (1971), 123–142. [Se]Se J.-P. Serre, Groupes algébriques et corps de classes, Hermann, 1959. [St]St J.H.M. Steenbrink, Mixed Hodge structures associated with isolated singularities, Proc. Symp. Pure Math., vol. 40, 1983, pp. 513–536. [SW]SW G. Scheia and H. Wiebe, Über Derivationen in isolierten Singularitäten auf vollständigen Durchschnitten, Math. Ann. 225 (1977), 161-171. [V1]V1 H. Vosegaard, Generalized Tjurina numbers of an isolated complete intersection singularity, European Singularities Network Preprints Archive 1998 (to appear in Math. Ann.). [V2]V2 H. Vosegaard, A characterization of quasi-homogeneous purely elliptic complete intersection singularities, Compositio Math. 124 (2000), 111–121. [W]W J. Wahl, A characterization of quasi-homogeneous Gorenstein surface singularities, Compositio Math. 55 (1985), 269–288.

Additional Information

Henrik Vosegaard
Affiliation: Department of Mathematics, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark

Received by editor(s): July 5, 2000
Received by editor(s) in revised form: October 10, 2000
Published electronically: March 13, 2002