Moduli of nodal curves on smooth surfaces of general type

Author:
F. Flamini

Journal:
J. Algebraic Geom. **11** (2002), 725-760

DOI:
https://doi.org/10.1090/S1056-3911-02-00322-3

Published electronically:
June 10, 2002

MathSciNet review:
1910265

Full-text PDF

Abstract | References | Additional Information

Abstract: In this paper we focus on the problem of computing the *number of moduli* of the so called *Severi varieties* (denoted by ), which parametrize universal families of irreducible, -nodal curves in a complete linear system , on a smooth projective surface of general type. We determine geometrical and numerical conditions on and numerical conditions on ensuring that such a number coincides with . As related facts, we also determine some sharp results concerning the geometry of some Severi varieties.

**1**R.D.M. Accola, On Castelnuovo's inequality for algebraic curves, I,*Trans. Am. Math. Soc.*,**251**(1979), 357-373.**2**E. Arbarello, M. Cornalba, P.A. Griffiths and J. Harris,*Geometry of Algebraic Curves*, Springer, Berlin, 1985.**3**W. Barth, C. Peters and A. Van de Ven,*Compact Complex Surfaces*, Springer, Berlin, 1984.**4**F. Bogomolov, Holomorphic tensors and vector bundles on projective varieties,*Math. USSR Isvestija*,**13**(1979), 499-555.**5**F. Catanese, Fibred surfaces, varieties isogenus to a product and related moduli spaces,*preprint*(1999).**6**L. Chiantini and C. Ciliberto, On the Severi varieties of surfaces in ,*J. Alg. Geometry*,**8**(1999), 67-83.**7**L. Chiantini and E. Sernesi, Nodal curves on surfaces of general type,*Math. Ann.*,**307**(1997), 41-56.**8**C. Ciliberto, Alcune applicazioni di un classico procedimento di Castelnuovo,*Seminari di Geometria 1982-83*, Univ. di Bologna - Istituto di Geometria, (1984), 17-43.**9**F. Flamini,*Families of nodal curves on projective surfaces*, Ph.D thesis, Consortium Universities of Rome ``La Sapienza" and ``Roma Tre" (1999)**10**F. Flamini, Some results of regularity for Severi varieties of projective surfaces,*Comm. Algebra***29**(2001), 2297-2311.**11**F. Flamini and C. Madonna, Geometric linear normality for nodal curves on some projective surfaces,*Boll. Un. Mat. Ital.*Sez. B Artic. Ric. Mat. (8)**4**(2001), 269-283.**12**F. Friedman,*Algebraic surfaces and holomorphic vector bundles*(UTX), Springer-Verlag, New York, 1998.**13**P. Griffiths and J. Harris, Residues and -cycles on algebraic varieties,*Ann. Math.*,**108**(1978), 461-505.**14**J. Harris, On the Severi problem,*Invent. Math.*,**84**(1986), 445-461.**15**J. Harris and I. Morrison,*Moduli of curves*, Graduate Texts in Mathematics, vol. 187, Springer-Verlag, New York, 1998.**16**R. Hartshorne,*Ample Subvarieties of Algebraic Varieties*, Springer LNM,**156**, Springer-Verlag, Berlin, 1970.**17**R. Hartshorne,*Algebraic Geometry*(GTM No. 52), Springer-Verlag, New York-Heidelberg, 1977.**18**R. Horikawa, On deformations of holomorphic maps I,*J. Math. Soc. Japan*,**25**(1973), 372-396.**19**K.W. Johnson, Immersion and embedding of projective varieties,*Acta mathematica*,**140**(1978), 49-74.**20**S. L. Kleiman, The enumerative theory of singularities, in*Nordic Summer School/NAVF - Symposium in Mathematics*, Oslo (1976), 297-396.**21**H. Matsumura, On algebraic groups of birational transformations,*Rend. Acc. Naz. Linc.*, ser. 8,**34**(1963), 151-155.**22**Y. Miyaoka, T. Peternell,*Geometry of higher dimensional algebraic varieties*, DMV-Seminar, Bd.**26**, Birkhäuser, Basel, 1997.**23**D. Mumford,*Lectures on curves on an algebraic surface*, Princeton University Press, Princeton, 1966.**24**C. Okonek, M. Schneider and H. Spindler,*Vector bundles on complex projective spaces*, Progress in Mathematics,**3**, Boston-Basel-Stuttgart, Birkhäuser, 1980.**25**G. Pareschi, Components of the Hilbert scheme of smooth space curves with the expected number of moduli,*Manuscripta Math.*,**63**(1989), 1-16.**26**M. Reid, Bogomolov's theorem ,*Proc. Internat. Symposium on Alg. Geom.*, Kyoto, (1977), 633-643.**27**M. Schneider, Symmetric differential forms as embedding obstructions and vanishing theorems,*J. Alg. Geom.*,**1**(1992), 175-181.**28**C. Schoen, Varieties dominated by product varieties,*International J. Math.*,**7**(1996), 541-571.**29**E. Sernesi, On the existence of certain families of curves,*Invent. Math.*,**75**, (1984), 25-57.**30**F. Severi,*Vorlesungen über algebraische Geometrie*, Teubner, Leipzig, 1921.**31**I.R. Shafarevich (Ed.),*Algebraic Geometry II. Cohomology of algebraic varieties. Algebraic surfaces*, Encyclopaedia of Mathematical Sciences,**35**, Springer, Berlin, 1995.**32**B. Shiffman and A.J. Sommese,*Vanishing Theorems on Complex Manifolds*, Progress in Mathematics,**56**, Boston-Basel-Stuttgart, Birkhäuser, 1985.**33**S.L. Tan, Cayley-Bacharach property of an algebraic variety and Fujita's conjecture,*J. Alg. Geom.*,**9**(2000), 201-222.**34**J.M. Wahl, Deformations of plane curves with nodes and cusps,*Am. J. Math.*,**96**(1974), 529-577.

Additional Information

**F. Flamini**

Affiliation:
Dipartimento di Matematica, Universita’ degli Studi di Roma - “Roma Tre", Largo San Leonardo Murialdo, 1 - 00146 Roma, Italy

Email:
flamini@matrm3.mat.uniroma3.it

DOI:
https://doi.org/10.1090/S1056-3911-02-00322-3

Received by editor(s):
July 21, 2000

Published electronically:
June 10, 2002

Additional Notes:
The author is a member of GNSAGA-INdAM