Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911



The mixed Hodge structure on the fundamental group of hyperelliptic curves and higher cycles

Author: Elisabetta Colombo
Journal: J. Algebraic Geom. 11 (2002), 761-790
Published electronically: June 10, 2002
MathSciNet review: 1910986
Full-text PDF

Abstract | References | Additional Information

Abstract: In this paper we give a geometrical interpretation of an extension of mixed Hodge structures (MHS) obtained from the canonical MHS on the group ring of the fundamental group of a hyperelliptic curve modulo the fourth power of its augmentation ideal. We show that the class of this extension coincides with the regulator image of a canonical higher cycle in a hyperelliptic Jacobian. This higher cycle was introduced and studied by Collino.

References [Enhancements On Off] (What's this?)

    [1]Be A.A.Beilinson, Higher regulators and values of L-functions, Jour. Sov. Math. 30 (1985), 2036-2070 [2]Bl S.Bloch, Algebraic cycles and higher K-theory, Adv. in Math. 61 (1986), 267-304 [3]BH J.Birman, H.Hilden, On isotopies of homeomorphisms of Riemann surfaces, Ann. of Math. 97 (1973), 424-439 [4]Ca J.A.Carlson, Extensions of mixed Hodge structures, Journeés de Geometrie Algebrique d’Angers, Sijthoff and Nordhoff, Alphen aan den Rijn (1980), 107-128 [5]Col A.Collino, Griffiths’ infinitesimal invariant and higher K-theory on hyperelliptic Jacobians, J.Algebraic Geom. 6 (1997), 393-415 [6]FK H.M.Farkas, I.Kra, Riemann surfaces, Graduate Texts in Mathematics, 71, Springer-Verlag (1992) [7]F W.Fulton, Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, Springer-Verlag (1984) [8]Al F.Guillén, V.Navarro Aznar, P.Pascula-Gainza, F.Puerta, Hyperreśolutions Cubiques et Descente cohomologiques, Lecture Notes in Mathematics, 1335 Springer-Verlag (1988) [9]HB B.Harris, Harmonic volumes, Acta Math. 150 (1983), 91-123 [10]HD1 R.Hain, The geometry of the Mixed Hodge structure on the fundamental group, Proc. of Symp. in Pure Math. 46 (1987), 247-282 [11]HD2 R.Hain, The de Rham homotopy theory of complex algebraic varieties I, K-Theory 1 (1987), 271-324 [12]HD3 R.Hain, Completions of mapping class groups and the cycle $C-C^-$, Contemp. Math. 150 (1993), 75-105 [13]HD4 R.Hain, Torelli groups and geometry of moduli spaces of curves, MSRI publications 28 (1995), 97-143 [14]HL R.Hain, E.Looijenga, Mapping class groups and moduli spaces of curves, Proc. of Symp. in Pure Math. 21 (1995), 97-142 [15]J1 D.Johnson, An abelian quotient of the mapping class group $\mathcal {J}_g$, Math. Ann. 249 (1980), 225-242 [16]J2 D.Johnson, A survey of the Torelli group, Cont. Math. 20 (1983), 165-179 [17]Ka1 R.Kaenders, The mixed Hodge structure on the fundamental group of a punctured Riemann surface, Proc. Amer. Math. Soc. 129 (2000), 1271-1281 [18]Mor J.Morgan, The algebraic topology of smooth algebraic varieties, Publ. Math. IHES 48 (1978), 137-204 [19]M2 S.Morita, On the structure of the Torelli group and the Casson invariant, Topology 30 (1991), 603-621 [20]M4 S.Morita, Abelian quotients of subgroups of the mapping class group of surfaces, Duke Math. J. 70 (1993), 699-726 [21]Muller S.Muller-Stach, Constructing indecomposable motivic cohomology classes on algebraic surfaces, J. Algebraic Geom. 6 (1997), no. 3, 513-543 [22]P M.Pulte, The fundamental group of a Riemann surface: Mixed Hodge structures and algebraic cycles, Duke Math. J. 57 (1988), 721-760 [23]Sa M.Saito, Mixed Hodge modules and admissible variations C.R.Acad.Sci. 309 I (1989), 351-356 [24]SZ J.Steenbrink, S.Zucker, Variation of mixed Hodge structure I, Invent. Math. 80 (1985), 489-542 [25]Voisin C.Voisin, Variations of Hodge structure and algebraic cycles, Proc. Int. Congress of Math., Vol. 1 (Zurich, 1994), 706-715, Birkhauser, Basel (1995)

Additional Information

Elisabetta Colombo
Affiliation: Dipartimento di Matematica, Universita’ di Milano, via Saldini 50, 20133 Milano, Italy

Received by editor(s): August 1, 2000
Published electronically: June 10, 2002
Additional Notes: The author acknowledges support from MURST and GNSAGA (CNR) Italy