Skip to Main Content
Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Un théorème de comparaison entre les faisceaux d’opérateurs différentiels de Berthelot et de Mebkhout-Narváez-Macarro


Author: Christine Noot-Huyghe
Journal: J. Algebraic Geom. 12 (2003), 147-199
DOI: https://doi.org/10.1090/S1056-3911-02-00296-5
Published electronically: August 26, 2002
MathSciNet review: 1948688
Full-text PDF

Abstract | References | Additional Information

Abstract: In this paper, we compare in one particular case, the arithmetic $D$-modules introduced by Berthelot and the arithmetic $D$-modules introduced by Mebkhout and Narváez-Macarro. We prove that there exists an equivalence of categories of coherent $D$-modules when you consider the arithmetic $D$-modules introduced by Berthelot on a projective smooth formal scheme $\mathcal {X}$, over some discrete valuation ring $R$ of mixed characteristics $(0,p)$, that is endowed with an ample divisor, along which the coefficients of the differential operators are overconvergent. On the side of Mebkhout-Narváez-Macarro, you have to look at differential operators over a smooth, affine, weakly formal scheme over $R$, whose $p$-adic completion is the complementary of $Z$ into $\mathcal {X}$. The equivalence of categories is given in one direction by taking global sections of the $D$-modules.


References [Enhancements On Off] (What's this?)

    EGA4 A. Grothendieck, en collaboration avec J. Dieudonné. Éléments de Géométrie Algébrique. Publ. Math. I.H.E.S., 32, 1967. Be1 P. Berthelot. $\mathcal {D}$-modules arithmétiques I. Opérateurs différentiels de niveau fini. Ann. Scient. École. Norm. Sup., $\rm {4}^{\textrm {e}}$ série, t. 29, pp. 185–272, 1996. Fu W. Fulton. A note on weakly complete algebras. Bull. Amer. Math. Soc., 75, p. 591–593, 1969. Hu1 C. Huyghe. $\mathcal {D}^{\dagger }$-affinité de l’espace projectif, avec un appendice de P. Berthelot. Compositio Mathematica, 108, No. 3, pp. 277–318, 1997. Hu2 C. Huyghe. $\mathcal {D}^{\dagger }(\infty )$-affinité des schémas projectifs. Ann. Inst. Fourier, 48, No. 4, pp. 913–956, 1998. Hudimcoh C. Huyghe. Finitude de la dimension cohomologique d’algèbres d’opérateurs différentiels faiblement complètes. Preprint de l’IRMAR, juin 2000. MebNM1 Z. Mebkhout and L. Narváez-Macarro. Sur les coefficients de de Rham - Grothendieck des variétés algébriques. Proc. Conf. $p$-adic Analysis (Trento 1989), Lecture Notes in Math., Springer-Verlag, 1454, pp. 267–308, 1990. MebNM2 Z. Mebkhout and L. Narváez-Macarro. Sur les coefficients de de Rham - Grothendieck des variétés algébriques II. En préparation, 2000. Mer D. Meredith. Weak formal schemes. Nagoya Math. J., 45, pp. 1–38, 1971. MW1 P. Monsky and G. Washnitzer. Formal cohomology I. Annals of Math., 88, pp. 181–217, 1968. Vidu A. Virrion. Dualité locale et holonomie pour les $\mathcal {D}$-modules arithmétiques. Bull. Soc. Math. France, t. 128, pp. 101–168, 2000.


Additional Information

Christine Noot-Huyghe
Affiliation: UFR de mathématiques, Université de Rennes 1, campus de Beaulieu, 35042 Rennes cedex, France
Email: Christine.Huyghe@univ-rennes1.fr

Received by editor(s): September 8, 2000
Published electronically: August 26, 2002
Additional Notes: Pendant la préparation de cet article, l’auteur a bénéficié du soutien du programme TMR de la Communauté Européenne, dans le cadre du réseau Arithmetic Algebraic Geometry (Contrat ERBFMRXCT 960006).