A reconstruction of Euler data
Authors:
Bong H. Lian, ChienHao Liu and ShingTung Yau
Journal:
J. Algebraic Geom. 12 (2003), 269284
DOI:
https://doi.org/10.1090/S1056391102003119
Published electronically:
September 18, 2002
MathSciNet review:
1949644
Fulltext PDF
Abstract  References  Additional Information
Abstract: We apply the mirror principle (see Mirror principle, I, Asian J. Math. 1 (1997), pp. 729–763) to reconstruct the Euler data $Q=\{Q_d\}_{d\in {\mathbb N}\cup \{0\}}$ associated to a vector bundle $V$ on ${\mathbb C}{\mathrm P}^n$ and a multiplicative class $b$. This gives a direct way to compute the intersection number $K_d$ without referring to any other Euler data linked to $Q$. Here $K_d$ is the integral of the cohomology class $b(V_d)$ of the induced bundle $V_d$ on a stable map moduli space. A package “EulerData_MP.m” in Maple V that carries out the actual computation is provided in the electronic version math.AG/0003071 of the current paper. For $b$, the Chern polynomial, the computation of $K_1$ for the bundle $V=T_{\ast }{\mathbb C}{\mathrm P}^2$, and $K_d$, $d=1,2,3$, for the bundles ${\mathcal O}_{{\mathbb C}{\mathrm P}^4}(l)$ with $6\le l\le 10$ are done using the code and are also included.

[Au]Au M. Audin, The topology of torus actions on symplectic manifolds, Prog. Math. 93, Birkhäuser, 1991.
[AB]AB M.F. Atiyah and R. Bott, The moment map and equivariant cohomology, Topology, 23 (1984), pp. 1  28.
[BDCPP]BDCPP G. Bini, C. De Concini, M. Polito, and C. Procesi, On the work of Givental relative to mirror symmetry, arXiv:math.AG/9805097.
[CdlOGP]CdlOGP P. Candelas, X. de la Ossa, P. Green, and L. Parkes, A pair of CalabiYau manifolds as an exactly soluble superconformal field theory, Nucl. Phys. B359 (1991), pp. 21  74.
[CK]CK D.A. Cox and S. Katz, Mirror symmetry and algebraic geometry, Math. Surv. Mono. 68, Amer. Math. Soc. 1999.
[CKYZ]CKYZ T.M. Chiang, A. Klemm, S.T. Yau, and E. Zaslow, Local mirror symmetry: calculations and interpretations, arXiv:hepth/9903053.
[FP]FP W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, in Algebraic geometry  Stanta Cruz 1995, J. Kollár, R. Lazarsfeld, and D. Morrison eds., Proc. Symp. Pure Math. vol. 62, part 2, pp. 45  96, Amer. Math. Soc. 1997.
[Gi]Gi A. Givental, Equivariant GromovWitten invariants, arXiv:alggeom/9603021.
[HKTY]HKTY S. Hosono, A. Klemm, S. Theisen, and S.T. Yau, Mirror symmetry, mirror map and applications to complete intersection CalabiYau spaces, pp. 545  606 in Mirror symmetry II, B. Greene and S.T. Yau eds., Amer. Math. Soc. and International Press, 1997.
[Ko]Ko M. Kontsevich, Enumeration of rational curves via torus actions, in The moduli space of curves, R. Dijkgraaf, C. Faber, and G. van der Geer eds., pp. 335  368, Birkhäuser, 1995.
[Li]Li Kefeng Liu, private communications.
[LLY]LLY B.H. Lian, K. Liu, and S.T. Yau, Mirror principle I, Asian J. Math. 1 (1997), pp. 729  763; II, arXiv:math.AG/9905006; III, arXiv:math.AG/9912038.
[MP]MP D.R. Morrison and M. Plesser, Summing the instantons: quantum cohomology and mirror symmetry in toric varieties, Nucl. Phys. B440 (1995), pp. 279  354.
[MS]MS Mirror symmetry I, S.T. Yau ed., Amer. Math. Soc. and International Press, 1998; Mirror symmetry II, B. Greene and S.T. Yau eds., Amer. Math. Soc. and International Press, 1997; Mirror symmetry III, D.H. Phong, L.V. Vinet, and S.T. Yau eds., Amer. Math. Soc., International Press, and Centre de Recherches Math., 1999.
[Pa]Pa R. Pandharipande, Rational curves on hypersurfaces (after givental), arXiv:math.AG/9806133.
[Wi]Wi E. Witten, Phases of $N=2$ theories in two dimensions, Nucl. Phys. B403 (1993), pp. 159  222.
Additional Information
Bong H. Lian
Affiliation:
National University of Singapore, Department of Mathematics, Singapore, 117543, Republic of Singapore
Email:
lian@brandeis.edu
ChienHao Liu
Affiliation:
Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
Email:
chienliu@math.harvard.edu
ShingTung Yau
Affiliation:
Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
MR Author ID:
185480
ORCID:
0000000333942187
Email:
yau@math.harvard.edu
Received by editor(s):
October 9, 2000
Published electronically:
September 18, 2002
Additional Notes:
B. H. Lian is on leave from Brandeis University, Department of Mathematics, Waltham, Massachusetts 02154. This work is supported by DOE grant DEFG0288ER25065 and NSF grants DMS9619884 and DMS9803347