Skip to Main Content
Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911



Appendix to “Secant varieties and successive minima" by C. Soulé: On linear subspaces contained in the secant varieties of a projective curve

Author: Claire Voisin
Journal: J. Algebraic Geom. 13 (2004), 343-347
Published electronically: December 4, 2003
MathSciNet review: 2047702
Full-text PDF

Abstract | References | Additional Information

Abstract: We show that the $d$-th secant variety of a projective curve of genus $g$ imbedded in projective space by a complete linear system of degree $2g-2+m$, with $m$ at least $2d+3$, does not contain linear spaces of dimension bigger than $d-1$, and that the only linear subspaces of dimension $d-1$ contained in it are the obvious ones.

References [Enhancements On Off] (What's this?)

    1 A. Bertram: Moduli of rank 2 vector bundles, theta divisors, and the geometry of curves in projective space, J. Diff. Geom. 35, 1992, 429-469.

Additional Information

Claire Voisin
Affiliation: Institut de Mathématiques de Jussieu, CNRS, UMR 7586, 175 rue du Chevaleret, 75013 Paris, France
MR Author ID: 237928

Received by editor(s): November 20, 2001
Published electronically: December 4, 2003