Moduli of affine schemes with reductive group action
Authors:
Valery Alexeev and Michel Brion
Journal:
J. Algebraic Geom. 14 (2005), 83-117
DOI:
https://doi.org/10.1090/S1056-3911-04-00377-7
Published electronically:
July 6, 2004
MathSciNet review:
2092127
Full-text PDF
Abstract |
References |
Additional Information
Abstract: For a connected reductive group $G$ and a finite-dimensional $G$-module $V$, we study the invariant Hilbert scheme that parameterizes closed $G$-stable subschemes of $V$ affording a fixed, multiplicity-finite representation of $G$ in their coordinate ring. We construct an action on this invariant Hilbert scheme of a maximal torus $T$ of $G$, together with an open $T$-stable subscheme admitting a good quotient. The fibers of the quotient map classify affine $G$-schemes having a prescribed categorical quotient by a maximal unipotent subgroup of $G$. We show that $V$ contains only finitely many multiplicity-free $G$-subvarieties, up to the action of the centralizer of $G$ in $\operatorname {GL}(V)$. As a consequence, there are only finitely many isomorphism classes of affine $G$-varieties affording a prescribed multiplicity-free representation in their coordinate ring.
[AB02]AlexeevBrionI V. Alexeev and M. Brion, Stable reductive varieties I: Affine varieties, Invent. Math., to appear.
- Klaus Altmann, Computation of the vector space $T^1$ for affine toric varieties, J. Pure Appl. Algebra 95 (1994), no. 3, 239–259. MR 1295959, DOI https://doi.org/10.1016/0022-4049%2894%2990060-4
- Klaus Altmann, Infinitesimal deformations and obstructions for toric singularities, J. Pure Appl. Algebra 119 (1997), no. 3, 211–235. MR 1453513, DOI https://doi.org/10.1016/S0022-4049%2896%2900029-1
- Frédéric Bien and Michel Brion, Automorphisms and local rigidity of regular varieties, Compositio Math. 104 (1996), no. 1, 1–26. MR 1420707
- Michel Brion, Vers une généralisation des espaces symétriques, J. Algebra 134 (1990), no. 1, 115–143 (French). MR 1068418, DOI https://doi.org/10.1016/0021-8693%2890%2990214-9
- Michel Brion and Franz Pauer, Valuations des espaces homogènes sphériques, Comment. Math. Helv. 62 (1987), no. 2, 265–285 (French). MR 896097, DOI https://doi.org/10.1007/BF02564447
[Cam01]Camus01 R. Camus, Variétés sphériques affines lisses, Ph. D. thesis, Grenoble, 2001; available at www-fourier.ujf-grenoble.fr.
- Jan Cheah, Cellular decompositions for nested Hilbert schemes of points, Pacific J. Math. 183 (1998), no. 1, 39–90. MR 1616606, DOI https://doi.org/10.2140/pjm.1998.183.39
- Santiago Encinas and Orlando Villamayor, A course on constructive desingularization and equivariance, Resolution of singularities (Obergurgl, 1997) Progr. Math., vol. 181, Birkhäuser, Basel, 2000, pp. 147–227. MR 1748620
- Frank D. Grosshans, Algebraic homogeneous spaces and invariant theory, Lecture Notes in Mathematics, vol. 1673, Springer-Verlag, Berlin, 1997. MR 1489234
- Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
[HS02]HaimanSturmfels02 M. Haiman and B. Sturmfels, Multigraded Hilbert Schemes, J. Algebraic Geom. 13 (2004), 725–769.
- Yujiro Kawamata, Minimal models and the Kodaira dimension of algebraic fiber spaces, J. Reine Angew. Math. 363 (1985), 1–46. MR 814013, DOI https://doi.org/10.1515/crll.1985.363.1
- Friedrich Knop, Weylgruppe und Momentabbildung, Invent. Math. 99 (1990), no. 1, 1–23 (German, with English summary). MR 1029388, DOI https://doi.org/10.1007/BF01234409
- Friedrich Knop, A Harish-Chandra homomorphism for reductive group actions, Ann. of Math. (2) 140 (1994), no. 2, 253–288. MR 1298713, DOI https://doi.org/10.2307/2118600
- Friedrich Knop, Automorphisms, root systems, and compactifications of homogeneous varieties, J. Amer. Math. Soc. 9 (1996), no. 1, 153–174. MR 1311823, DOI https://doi.org/10.1090/S0894-0347-96-00179-8
- Gérard Laumon and Laurent Moret-Bailly, Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 39, Springer-Verlag, Berlin, 2000 (French). MR 1771927
- D. Luna, Variétés sphériques de type $A$, Publ. Math. Inst. Hautes Études Sci. 94 (2001), 161–226 (French). MR 1896179, DOI https://doi.org/10.1007/s10240-001-8194-0
- David Mumford, Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 34, Springer-Verlag, Berlin-New York, 1965. MR 0214602
- Iku Nakamura, Hilbert schemes of abelian group orbits, J. Algebraic Geom. 10 (2001), no. 4, 757–779. MR 1838978
- Irena Peeva and Mike Stillman, Toric Hilbert schemes, Duke Math. J. 111 (2002), no. 3, 419–449. MR 1885827, DOI https://doi.org/10.1215/S0012-7094-02-11132-6
- Henry C. Pinkham, Deformations of algebraic varieties with $G_{m}$ action, Société Mathématique de France, Paris, 1974. Astérisque, No. 20. MR 0376672
- V. L. Popov, Contractions of actions of reductive algebraic groups, Mat. Sb. (N.S.) 130(172) (1986), no. 3, 310–334, 431 (Russian); English transl., Math. USSR-Sb. 58 (1987), no. 2, 311–335. MR 865764, DOI https://doi.org/10.1070/SM1987v058n02ABEH003106
- Roger Richardson, On the variation of isotropy subalgebras, Proc. Conf. on Transformation Groups (New Orleans, La., 1967) Springer, New York, 1968, pp. 429–440. MR 0244439
- R. W. Richardson Jr., Deformations of Lie subgroups and the variation of isotropy subgroups, Acta Math. 129 (1972), 35–73. MR 299723, DOI https://doi.org/10.1007/BF02392213
- Maxwell Rosenlicht, A remark on quotient spaces, An. Acad. Brasil. Ci. 35 (1963), 487–489. MR 171782
- Hideyasu Sumihiro, Equivariant completion, J. Math. Kyoto Univ. 14 (1974), 1–28. MR 337963, DOI https://doi.org/10.1215/kjm/1250523277
- Hideyasu Sumihiro, Equivariant completion. II, J. Math. Kyoto Univ. 15 (1975), no. 3, 573–605. MR 387294, DOI https://doi.org/10.1215/kjm/1250523005
- È. B. Vinberg, Complexity of actions of reductive groups, Funktsional. Anal. i Prilozhen. 20 (1986), no. 1, 1–13, 96 (Russian). MR 831043
[AB02]AlexeevBrionI V. Alexeev and M. Brion, Stable reductive varieties I: Affine varieties, Invent. Math., to appear.
[Alt94]Altmann94 K. Altmann, Computation of the vector space $T^1$ for affine toric varieties, J. Pure Appl. Algebra 95 (1994), 239–259.
[Alt97]Altmann97 ---, Infinitesimal deformations and obstructions for toric singularities, J. Pure Appl. Algebra 119 (1997), 211–235.
[BB96]BienBrion96 F. Bien and M. Brion, Automorphisms and local rigidity of regular varieties, Compositio Math. 104 (1996), 1–26.
[Br90]Brion90 M. Brion, Vers une généralisation des espaces symétriques, J. Algebra 134 (1990), 115–143.
[BP87]BrionPauer87 M. Brion and F. Pauer, Valuations des espaces homogènes sphériques, Comment. Math. Helv. 62 (1987), 265–285.
[Cam01]Camus01 R. Camus, Variétés sphériques affines lisses, Ph. D. thesis, Grenoble, 2001; available at www-fourier.ujf-grenoble.fr.
[Che98]Cheah98 J. Cheah, Cellular decompositions for nested Hilbert schemes of points, Pacific J. Math. 183 (1998), 39–90.
[EV00]EncinasVillamayor00 S. Encinas and O. Villamayor, A course on constructive desingularization and equivariance, in: Resolution of singularities (Obergburg, 1997), 147–227, Progr. Math. 181, Birkhäuser, Basel 2000.
[Gro97]Grosshans97 F. Grosshans, Algebraic homogeneous spaces and invariant theory, Lecture Notes in Mathematics 1673, Springer–Verlag, 1997.
[Har77]Hartshorne77 R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, vol. 52, Springer–Verlag, 1977.
[HS02]HaimanSturmfels02 M. Haiman and B. Sturmfels, Multigraded Hilbert Schemes, J. Algebraic Geom. 13 (2004), 725–769.
[Kaw85]Kawamata85 Y. Kawamata, Minimal models and the Kodaira dimension of algebraic fiber spaces, J. Reine Angew. Math. 363 (1985), 1–46.
[Kno90]Knop90 F. Knop, Weylgruppe und Momentabbildung, Invent. Math. 99 (1990), 1–23.
[Kno94]Knop94 ---, A Harish–Chandra homomorphism for reductive group actions, Ann. Math. 140 (1994), 253–288.
[Kno96]Knop96 ---, Automorphisms, root systems, and compactifications of homogeneous varieties, J. Amer. Math. Soc. 9 (1996), 153–174.
[LM00]LaumonMoretBailly00 G. Laumon and L. Moret–Bailly, Champs algébriques, Ergebnisse der Math. 39, Springer–Verlag, Berlin, 2000.
[Lun01]Luna01 D. Luna, Variétés sphériques de type $A$, Publ. Math. I.H.E.S. 94 (2001), 161–226.
[Mum94]MumfordGIT3ed D. Mumford, Geometric invariant theory, third enlarged ed., Ergebnisse der Mathematik und ihrer Grenzgebiete 34, Springer-Verlag, 1994.
[Nak01]Nakamura01 I. Nakamura, Hilbert schemes of abelian group orbits, J. Algebraic Geom. 10 (2001), 757–779.
[PS02]PeevaStillman02 I. Peeva and M. Stillman, Toric Hilbert schemes, Duke Math. J. 111 (2002), 419–449.
[Pin74]Pinkham74 H. C. Pinkham, Deformations of algebraic varieties with ${\mathbb G}_m$-action, Astérisque 20 (1974).
[Pop86]Popov86 V. L. Popov, Contractions of actions of reductive algebraic groups, Mat. Sb. (N.S.) 130 (1986), 310–334.
[Ric68]Richardson68 R. W. Richardson, On the variation of isotropy Lie algebras, in: Proceedings of the conference on transformation groups, 429–440, Springer–Verlag, New York, 1968.
[Ric72]Richardson72 ---, Deformations of Lie subgroups and the variation of isotropy subgroups, Acta Math. 129 (1972), 35–73.
[Ros63]Ros63 M. Rosenlicht, A remark on quotient spaces, An. Acad. Brasil Ci. 35 (1963), 487–489.
[Sum74]Sumihiro74 H. Sumihiro, Equivariant completion, J. Math. Kyoto Univ. 14 (1974), 1–28.
[Sum75]Sumihiro75 ---, Equivariant completion II, J. Math. Kyoto Univ. 15 (1975), 573–605.
[Vin86]Vinberg86 E. B. Vinberg, Complexity of actions of reductive groups, Functional Anal. Appl. 20 (1986), 1–11.
Additional Information
Valery Alexeev
Affiliation:
Department of Mathematics, University of Georgia, Athens, Georgia 30602
MR Author ID:
317826
Email:
valery@math.uga.edu
Michel Brion
Affiliation:
Institut Fourier, B. P. 74, 38402 Saint-Martin d’Hères Cedex, France
MR Author ID:
41725
Email:
Michel.Brion@ujf-grenoble.fr
Received by editor(s):
January 31, 2003
Published electronically:
July 6, 2004
Additional Notes:
The first author was partially supported by NSF grant 0101280. Part of this work was done during the second author’s stay at the University of Georgia in January, 2003