Non-Archimedean orbifolds covered by Mumford curves
Author:
Fumiharu Kato
Journal:
J. Algebraic Geom. 14 (2005), 1-34
DOI:
https://doi.org/10.1090/S1056-3911-04-00384-4
Published electronically:
July 20, 2004
MathSciNet review:
2092125
Full-text PDF
Abstract |
References |
Additional Information
Abstract: In this article we develop a theory of the so-called Mumford orbifolds, viz. rigid-analytic orbifolds covered by Mumford curves. General recipe for treating such orbifolds is given. The main result states a necessary and sufficient condition for abstract graphs of groups to be realized as discrete groups for Mumford orbifolds, which is useful for constructing several interesting non-Archimedean discrete groups, such as $p$-adic triangle groups.
- Yves André, $p$-adic orbifolds and $p$-adic triangle groups, Sūrikaisekikenkyūsho K\B{o}kyūroku 1073 (1998), 136–159. Rigid geometry and group actions (Japanese) (Kyoto, 1998). MR 1713695
- Yves André and Francesco Baldassarri, De Rham cohomology of differential modules on algebraic varieties, Progress in Mathematics, vol. 189, Birkhäuser Verlag, Basel, 2001. MR 1807281
- Gunther Cornelissen, Fumiharu Kato, and Aristides Kontogeorgis, Discontinuous groups in positive characteristic and automorphisms of Mumford curves, Math. Ann. 320 (2001), no. 1, 55–85. MR 1835062, DOI https://doi.org/10.1007/PL00004470
- Gunther Cornelissen and Fumiharu Kato, Mumford curves with maximal automorphism group, Proc. Amer. Math. Soc. 132 (2004), no. 7, 1937–1941. MR 2053963, DOI https://doi.org/10.1090/S0002-9939-04-07379-4
- Gunther Cornelissen and Fumiharu Kato, Equivariant deformation of Mumford curves and of ordinary curves in positive characteristic, Duke Math. J. 116 (2003), no. 3, 431–470. MR 1958094, DOI https://doi.org/10.1215/S0012-7094-03-11632-4
- Lothar Gerritzen and Marius van der Put, Schottky groups and Mumford curves, Lecture Notes in Mathematics, vol. 817, Springer, Berlin, 1980. MR 590243
Her78 Herrlich, F.: Ăśber Automorphismen $p$-adischer Schottkykurven, Dissertation, Bochum, 1978.
- Frank Herrlich, Endlich erzeugbare $p$-adische diskontinuierliche Gruppen, Arch. Math. (Basel) 35 (1980), no. 6, 505–515 (1981) (German). MR 604249, DOI https://doi.org/10.1007/BF01235375
- Frank Herrlich, Die Ordnung der Automorphismengruppe einer $p$-adischen Schottkykurve, Math. Ann. 246 (1979/80), no. 2, 125–130 (German). MR 564682, DOI https://doi.org/10.1007/BF01420164
- Frank Herrlich, $p$-adisch diskontinuierlich einbettbare Graphen von Gruppen, Arch. Math. (Basel) 39 (1982), no. 3, 204–216 (German). MR 682448, DOI https://doi.org/10.1007/BF01899527
- Masa-Nori Ishida and Fumiharu Kato, The strong rigidity theorem for non-Archimedean uniformization, Tohoku Math. J. (2) 50 (1998), no. 4, 537–555. MR 1653430, DOI https://doi.org/10.2748/tmj/1178224897
Kat00 Kato, F.: $p$-adic Schwarzian triangle groups of Mumford type, preprint, 2000.
- Fumiharu Kato, Mumford curves in a specialized pencil of sextics, Manuscripta Math. 104 (2001), no. 4, 451–458. MR 1836106, DOI https://doi.org/10.1007/s002290170019
- Nicholas M. Katz, Exponential sums and differential equations, Annals of Mathematics Studies, vol. 124, Princeton University Press, Princeton, NJ, 1990. MR 1081536
- Bernard Maskit, Kleinian groups, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 287, Springer-Verlag, Berlin, 1988. MR 959135
- David Mumford, An analytic construction of degenerating curves over complete local rings, Compositio Math. 24 (1972), 129–174. MR 352105
Mus78 Mustafin, G. A.: Nonarchimedean uniformization, Math. USSR Sbornik 34 (1978), 187–214.
- Marco Reni, A graph-theoretical approach to Kleinian groups, Proc. London Math. Soc. (3) 67 (1993), no. 1, 200–224. MR 1218126, DOI https://doi.org/10.1112/plms/s3-67.1.200
- Marc Reversat, Sur les revêtements de Schottky des courbes modulaires de Drinfeld, Arch. Math. (Basel) 66 (1996), no. 5, 378–387 (French). MR 1383902, DOI https://doi.org/10.1007/BF01781556
Ser80 Serre, J-P.: Trees, Springer-Verlag, Berlin, Heidelberg, New York, 1980.
- E.-U. Gekeler, M. van der Put, M. Reversat, and J. Van Geel (eds.), Drinfeld modules, modular schemes and applications, World Scientific Publishing Co., Inc., River Edge, NJ, 1997. MR 1630594
Web99 Weber, H.: Lehrbuch der Algebra, Chelsea Publishing Company, New York, 1899 .
Yos87 Yoshida, M.: Fuchsian differential equations, Aspects of Mathematics Vol. E11, Friedr. Vieweg & Sohn, Braunschweig/Wiesbaden, 1987.
And98 André, Y.: $p$-adic orbifolds and $p$-adic triangle groups, RIMS Kyoto proceedings (Sūrikaisekikenkyūsho Kōkyūroku) No. 1073, proceedings of the conference “rigid geometry and group action” Kyoto, December 1998, 136-159.
A-B01 André, Y., Baldassarri, F.: De Rham cohomology of differential modules on algebraic varieties, Progress in Mathematics 189, Birkhäuser Verlag, Basel, 2001.
CKK99 Cornelissen, G., Kato, F., Kontogeorgis, A.: Discontinuous groups in positive characteristic and automorphisms of Mumford curves, Math. Ann. 320 (2001), 55–85.
C-K00 Cornelissen, G., Kato, F.: Mumford curves with maximal automorphism group, Proc. Amer. Math. Soc. 132 (2004), 1937–1941.
C-K01 Cornelissen, G., Kato, F., Equivariant deformation of Mumford curves and of ordinary curves in positive characteristic, Duke Math. J. 116 (2003), 431–470.
GvP80 Gerritzen, L., van der Put, M.: Schottky groups and Mumford curves, Lecture Notes in Math., 817, Springer, Berlin, 1980.
Her78 Herrlich, F.: Ăśber Automorphismen $p$-adischer Schottkykurven, Dissertation, Bochum, 1978.
Her80a Herrlich, F.: Endlich erzeugbare $p$-adische diskontinuierliche Gruppen, Arch. Math. 35 (1980), 505–515.
Her80b Herrlich, F.: Die Ordnung der Automorphismengruppe einer $p$-adischen Schottkykurve, Math. Ann. 246 (1980), 125–130.
Her82 Herrlich, F.: $p$-adisch diskontinuierlich einbettbare Graphen von Gruppen, Arch. Math. 39 (1982), 204–216.
I-K98 Ishida, M.-N., Kato, F.: The strong rigidity theorem for non-Archimedean uniformization, Tôhoku Math. J. 50 (1998), 537–555.
Kat00 Kato, F.: $p$-adic Schwarzian triangle groups of Mumford type, preprint, 2000.
Kat01 Kato, F.: Mumford curves in a specialized pencil of sextics, Manuscripta Math. 104 (2001), 451–458.
Katz Katz, N.: Exponential sums and differential equations, Annals of Mathematics Studies 124, Princeton University Press, Princeton, NJ, 1990.
Mas88 Maskit, B.: Kleinian groups, Grundl. der math. Wiss. Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1988.
Mum72 Mumford, A.: An analytic construction of degenerating curves over complete local rings, Compositio Math. 24, Fasc. 2 (1972), 129–174.
Mus78 Mustafin, G. A.: Nonarchimedean uniformization, Math. USSR Sbornik 34 (1978), 187–214.
Ren93 Reni, M.: A graph-theoretical approach to Kleinian groups, Proc. London Math. Soc. (3) 67 (1993), 200–224.
Rev96 Reversat, M.: Sur les revêtements de Schottky des courbes modulaires de Drinfeld, Arch. Math. 66 (1996), 378–387.
Ser80 Serre, J-P.: Trees, Springer-Verlag, Berlin, Heidelberg, New York, 1980.
vdP97 van der Put, M.: The structure of $\Omega$ and its quotients $\Gamma \backslash \Omega$, in Proceedings of the Workshop on “Drinfeld Modules, Modular Schemes and Applications” (Gekeler, E.-U., van der Put, M., Reversat, M., Van Geel, J. ed.), World Scientific, Singapore, New Jersey, London, Hong Kong, 1997, 103–112.
Web99 Weber, H.: Lehrbuch der Algebra, Chelsea Publishing Company, New York, 1899 .
Yos87 Yoshida, M.: Fuchsian differential equations, Aspects of Mathematics Vol. E11, Friedr. Vieweg & Sohn, Braunschweig/Wiesbaden, 1987.
Additional Information
Fumiharu Kato
Affiliation:
Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan
Email:
kato@math.kyoto-u.ac.jp
Received by editor(s):
April 12, 2002
Received by editor(s) in revised form:
November 4, 2003
Published electronically:
July 20, 2004