A logarithmic view towards semistable reduction
Author:
Jakob Stix
Journal:
J. Algebraic Geom. 14 (2005), 119-136
DOI:
https://doi.org/10.1090/S1056-3911-04-00388-1
Published electronically:
June 24, 2004
MathSciNet review:
2092128
Full-text PDF
Abstract |
References |
Additional Information
Abstract: A smooth, proper family of curves creates a monodromy action of the fundamental group of the base on the $\textrm {H}^1$ of a fibre. The geometric condition of T. Saito for the action of the wild inertia of a boundary point to be trivial is transformed to the condition of logarithmic smooth reduction. The proof emphasizes methods and results from logarithmic geometry. It applies to quasi-projective smooth curves with étale boundary divisor.
- Ahmed Abbes, Réduction semi-stable des courbes d’après Artin, Deligne, Grothendieck, Mumford, Saito, Winters, $\ldots $, Courbes semi-stables et groupe fondamental en géométrie algébrique (Luminy, 1998) Progr. Math., vol. 187, Birkhäuser, Basel, 2000, pp. 59–110 (French). MR 1768094
- Werner Bauer, On smooth, unramified étale and flat morphisms of fine logarithmic schemes, Math. Nachr. 176 (1995), 5–16. MR 1361122, DOI https://doi.org/10.1002/mana.19951760102
- Marshall Hall Jr., The theory of groups, The Macmillan Co., New York, N.Y., 1959. MR 0103215
- Luc Illusie, An overview of the work of K. Fujiwara, K. Kato, and C. Nakayama on logarithmic étale cohomology, Astérisque 279 (2002), 271–322. Cohomologies $p$-adiques et applications arithmétiques, II. MR 1922832
- Kazuya Kato, Logarithmic structures of Fontaine-Illusie, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988) Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 191–224. MR 1463703
- Kazuya Kato, Toric singularities, Amer. J. Math. 116 (1994), no. 5, 1073–1099. MR 1296725, DOI https://doi.org/10.2307/2374941
- Stephen Lichtenbaum, Curves over discrete valuation rings, Amer. J. Math. 90 (1968), 380–405. MR 230724, DOI https://doi.org/10.2307/2373535
- Chikara Nakayama, Nearby cycles for log smooth families, Compositio Math. 112 (1998), no. 1, 45–75. MR 1622751, DOI https://doi.org/10.1023/A%3A1000327225021
- Takeshi Saito, Vanishing cycles and geometry of curves over a discrete valuation ring, Amer. J. Math. 109 (1987), no. 6, 1043–1085. MR 919003, DOI https://doi.org/10.2307/2374585
[Sai04]Saito2 Saito, T., Log smooth extension of a family of curves and semi-stable reduction, J. Algebraic Geom. 13 (2004), 287–321.
- Jakob Stix, Projective anabelian curves in positive characteristic and descent theory for log-étale covers, Bonner Mathematische Schriften [Bonn Mathematical Publications], vol. 354, Universität Bonn, Mathematisches Institut, Bonn, 2002. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 2002. MR 2012864
[Vi02]Vith Vidal, I., Contributions à la cohomologie étale des schémas et des log schémas, thèse, 2002.
[Ab00]Abbes Abbes, A., Réduction semistable des courbes d’après Artin, Deligne, Grothendieck, Mumford, Saito, Winters, $\ldots$, in: Courbes semi-stables et groupe fondamental en géométrie algébrique (ed. J.-B. Bost, F. Loeser, M. Raynaud), Prog. Math. 187, Birkhäuser (2000), 59–110.
[Ba95]Bauer Bauer, W., On smooth, unramified, étale and flat morphisms of fine logarithmic schemes, Math. Nachr. 176 (1995), 5–16.
[Ha59]Hall Hall, M. jr., The theory of groups, The Macmillan Co., New York (1959).
[Il02]OV Illusie, L., An overview of the work of K. Fujiwara, K. Kato, and C. Nakayama on logarithmic étale cohomology, Astérisque 279 (2002), 271–322.
[Ka89]KaJHU Kato, K., Logarithmic structures of Fontaine–Illusie, in Algebraic Analysis, Geometry and Number Theory, The Johns Hopkins University Press (1989), 191–224.
[Ka94]Kats Kato, K., Toric singularities, Amer. J. Math. 116 (1994), 1073–1099.
[Li68]Lich Lichtenbaum, S., Curves over discrete valuation rings, Amer. J. Math. 90 (1968), 380–405.
[Na98]Nacycles Nakayama, C., Nearby cycles for log smooth families, Comp. Math. 112 (1998), 45–75.
[Sai87]Saito Saito, T., Vanishing cycles and geometry of curves over a discrete valuation ring, Amer. J. Math. 109 (1987), 1043–1085.
[Sai04]Saito2 Saito, T., Log smooth extension of a family of curves and semi-stable reduction, J. Algebraic Geom. 13 (2004), 287–321.
[Sx02]Stix Stix, J., Projective anabelian curves in positive characteristic and descent theory for log étale covers, thesis, Bonner Mathematische Schriften 354 (2002).
[Vi02]Vith Vidal, I., Contributions à la cohomologie étale des schémas et des log schémas, thèse, 2002.
Additional Information
Jakob Stix
Affiliation:
Mathematisches Institut, Universität Bonn, Beringstraße 1, 53115 Bonn, Germany
Email:
stix@math.uni-bonn.de
Received by editor(s):
May 13, 2003
Received by editor(s) in revised form:
February 10, 2004
Published electronically:
June 24, 2004
Additional Notes:
The author acknowledges the financial support provided through the European Community’s Human Potential Program under contract HPRN-CT-2000-00114, GTEM