On the moduli space of rank $3$ vector bundles on a genus $2$ curve and the Coble cubic
Author:
Angela Ortega
Journal:
J. Algebraic Geom. 14 (2005), 327-356
DOI:
https://doi.org/10.1090/S1056-3911-04-00387-X
Published electronically:
November 18, 2004
MathSciNet review:
2123233
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We prove a conjecture about the moduli space $\mathcal {SU}_C(3)$ of semi-stable rank 3 vector bundles with trivial determinant on a genus 2 curve $C$, due to I. Dolgachev. Given $C$ a smooth projective curve of genus 2, and the embedding of the Jacobian $JC$ into $|3\Theta |$, A. Coble proved, at the beginning of the 20th century, that there exists a unique cubic hypersurface $\mathcal {C}$ in $|3\Theta |^* \simeq \mathbb {P}^8$, $JC[3]$-invariant and singular along $JC$. On the other hand, we have a map of degree 2 from $\mathcal {SU}_C(3)$ over $|3\Theta | \simeq \mathbb {P}^{8*}$, ramified along a sextic hypersurface $\mathcal {B}$. Dolgachev’s conjecture affirms that the sextic $\mathcal {B}$ is the dual variety of Coble’s cubic $\mathcal {C}$.
- W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer-Verlag, Berlin, 1984. MR 749574
- W. Barth, Quadratic equations for level-$3$ abelian surfaces, Abelian varieties (Egloffstein, 1993) de Gruyter, Berlin, 1995, pp. 1–18. MR 1336597
- Arnaud Beauville, Fibrés de rang $2$ sur une courbe, fibré déterminant et fonctions thêta, Bull. Soc. Math. France 116 (1988), no. 4, 431–448 (1989) (French, with English summary). MR 1005388
- Arnaud Beauville, Vector bundles on curves and generalized theta functions: recent results and open problems, Current topics in complex algebraic geometry (Berkeley, CA, 1992/93) Math. Sci. Res. Inst. Publ., vol. 28, Cambridge Univ. Press, Cambridge, 1995, pp. 17–33. MR 1397056
- Arnaud Beauville, M. S. Narasimhan, and S. Ramanan, Spectral curves and the generalised theta divisor, J. Reine Angew. Math. 398 (1989), 169–179. MR 998478, DOI https://doi.org/10.1515/crll.1989.398.169
- Nicolas Bourbaki, Éléments de mathématique, Masson, Paris, 1981 (French). Groupes et algèbres de Lie. Chapitres 4, 5 et 6. [Lie groups and Lie algebras. Chapters 4, 5 and 6]. MR 647314
- Arthur B. Coble, Point sets and allied Cremona groups. III, Trans. Amer. Math. Soc. 18 (1917), no. 3, 331–372. MR 1501073, DOI https://doi.org/10.1090/S0002-9947-1917-1501073-9
C2 A. Coble: Algebraic geometry and theta functions. AMS Coll. Publi. 10, Providence, 1929 (3ème. edition, 1969).
- J.-M. Drezet and M. S. Narasimhan, Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. Math. 97 (1989), no. 1, 53–94 (French). MR 999313, DOI https://doi.org/10.1007/BF01850655
- William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620
- William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249
- Yves Laszlo, Local structure of the moduli space of vector bundles over curves, Comment. Math. Helv. 71 (1996), no. 3, 373–401. MR 1418944, DOI https://doi.org/10.1007/BF02566426
- Herbert Lange and Christina Birkenhake, Complex abelian varieties, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 302, Springer-Verlag, Berlin, 1992. MR 1217487
- Ch. Birkenhake and H. Lange, Moduli spaces of abelian surfaces with isogeny, Geometry and analysis (Bombay, 1992) Tata Inst. Fund. Res., Bombay, 1995, pp. 225–243. MR 1351509
- Ch. Birkenhake and H. Lange, A family of abelian surfaces and curves of genus four, Manuscripta Math. 85 (1994), no. 3-4, 393–407. MR 1305750, DOI https://doi.org/10.1007/BF02568206
- D. Mumford, On the equations defining abelian varieties. I, Invent. Math. 1 (1966), 287–354. MR 204427, DOI https://doi.org/10.1007/BF01389737
- M. S. Narasimhan and S. Ramanan, $2\theta $-linear systems on abelian varieties, Vector bundles on algebraic varieties (Bombay, 1984) Tata Inst. Fund. Res. Stud. Math., vol. 11, Tata Inst. Fund. Res., Bombay, 1987, pp. 415–427. MR 893605
- P. E. Newstead, Stable bundles of rank $2$ and odd degree over a curve of genus $2$, Topology 7 (1968), 205–215. MR 237500, DOI https://doi.org/10.1016/0040-9383%2868%2990001-3
- Angela Ortega, Variétés de Prym associées aux revêtements $n$-cycliques d’une courbe hyperelliptique, Math. Z. 245 (2003), no. 1, 97–103 (French). MR 2023955, DOI https://doi.org/10.1007/s00209-003-0522-2
- W. M. Oxbury, Prym varieties and the moduli of spin bundles, Algebraic geometry (Catania, 1993/Barcelona, 1994) Lecture Notes in Pure and Appl. Math., vol. 200, Dekker, New York, 1998, pp. 351–376. MR 1651104
- Michel Raynaud, Sections des fibrés vectoriels sur une courbe, Bull. Soc. Math. France 110 (1982), no. 1, 103–125 (French, with English summary). MR 662131
B-P-V W. Barth, C. Peters, A. Van-de-Ven: Compact complex surfaces. Berlin, New York: Springer-Verlag, 1984.
Barth W. Barth: Quadratic equations for level-$3$ abelian surfaces. Abelian varieties (Egloffstein, 1993), 1-18, de Gruyter, Berlin, 1995.
B1 A. Beauville: Fibrés de rang 2 sur les courbes, fibré déterminant et functions thêta. Bull. Soc. Math. France 116 (1988), 431-438.
B2 A. Beauville:Vector bundles on curves and generalized theta fonctions: recent results and open problems. Current topics in complex algebraic geometry, MSRI Publications 28, Cambridge University Press, 1995, 17-33.
B-N-R A. Beauville, M.S. Narasimhan, S. Ramanan: Spectral curves and the generalised theta divisor. J. Reine Angew. Math. 398 (1989), 169-179.
Bou N. Bourbaki: Éléments de mathématiques: groupes et algèbres de Lie. Chapitres 4. Paris: Masson, 1981.
C1 A. Coble: Point sets and allied Cremona groups III. Trans. Amer. Math. Soc. 18 (1917), 331-372.
C2 A. Coble: Algebraic geometry and theta functions. AMS Coll. Publi. 10, Providence, 1929 (3ème. edition, 1969).
D-N J.-M. Drezet, M.S. Narasimhan: Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques. Invent. Math. 97 (1989), 53-94.
F W. Fulton: Intersection theory, Springer Verlag, 1984.
F-H W. Fulton, J. Harris: Representation theory: a first course. Springer Verlag, 1991.
L2 Y. Laszlo: Local structure of the moduli space of vector bundles over curves. Comment. Math. Helvetici 71 (1996), 373-401.
CAV H. Lange, Ch. Birkenhake: Complex Abelian Varieties. Grundlehren 302, Springer Verlag, 1982.
BL1 H. Lange, Ch. Birkenhake: Moduli Spaces of Abelian Surfaces with Isogeny. Geometry and analysis, Tata Inst. Fund. Res., Bombay, 1995, 225-243.
BL2 H. Lange, Ch. Birkenhake: A Family of Abelian Surfaces and Curves of Genus Four. Manuscripta Math. 85 (1994), 393-407.
Mum1 D. Mumford: On equations defining Abelian varieties. Invent. Math. 1 (1966), 287-354.
N-R2 M.S. Narasimhan, S. Ramanan: 2$\theta$ linear systems on abelian varieties. Vector bundles on algebraic varieties, Oxford University Press, 1987, 415-427.
New P.E. Newstead: Stable bundles of rank 2 and odd degree over a curve of genus 2. Topology 7 (1968), 205-215.
OO A. Ortega: Variétés de Prym associées aux revêtements $n$-cycliques d’une courbe hyperelliptique. Math. Z. 245 (2003), 97-103.
O W.M. Oxbury: Prym varieties and the moduli of spin bundles. Lect. Notes Pure Appl. Math. 200, 1998, 351-376.
R M. Raynaud: Sections des fibrés vectoriels sur une courbe. Bull. Soc. Math. France 110 (1982), 103-125.
Additional Information
Angela Ortega
Affiliation:
Laboratoire J.-A. Dieudonné, Université de Nice Sophia-Antipolis, Parc Valrose, 06108 Nice Cedex 02, France
Address at time of publication:
Instituto de Matemáticas, UNAM Unidad Morelia, Apartado Postal 61-3 Xangari, CP 58089 Morelia, Mich., Mexico
Email:
ortega@math.unice.fr
Received by editor(s):
November 19, 2003
Received by editor(s) in revised form:
January 20, 2004
Published electronically:
November 18, 2004