The Hodge-${\mathcal D}$-conjecture for $\text \textrm {K3}$ and Abelian surfaces
Authors:
Xi Chen and James D. Lewis
Journal:
J. Algebraic Geom. 14 (2005), 213-240
DOI:
https://doi.org/10.1090/S1056-3911-04-00390-X
Published electronically:
December 30, 2004
MathSciNet review:
2123228
Full-text PDF
Abstract |
References |
Additional Information
Abstract: Let $X$ be a projective algebraic manifold, and $\text {CH}^{k}(X,1)$ the higher Chow group, with corresponding real regulator $\text {r}_{k,1}\otimes {{\mathbb R}}: \text {CH}^k(X, 1)\otimes {{\mathbb R}} \to H_{\mathcal D}^{2k-1}(X,{{\mathbb R}}(k))$. If $X$ is a general K3 surface or Abelian surface, and $k=2$, we prove the Hodge-${\mathcal D}$-conjecture, i.e. the surjectivity of $\text {r}_{2,1}\otimes {{\mathbb R}}$. Since the Hodge-${\mathcal D}$-conjecture is not true for general surfaces in $\mathbb {P}^{3}$ of degree $\geq 5$, the results in this paper provide an effective bound for when this conjecture is true.
- A. A. Beĭlinson, Higher regulators of modular curves, Applications of algebraic $K$-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983) Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 1–34. MR 862627, DOI https://doi.org/10.1090/conm/055.1/862627
- A. A. Beĭlinson, Notes on absolute Hodge cohomology, Applications of algebraic $K$-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983) Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 35–68. MR 862628, DOI https://doi.org/10.1090/conm/055.1/862628
- Spencer Bloch, Algebraic cycles and higher $K$-theory, Adv. in Math. 61 (1986), no. 3, 267–304. MR 852815, DOI https://doi.org/10.1016/0001-8708%2886%2990081-2
- Spencer Bloch, Lectures on algebraic cycles, Duke University Mathematics Series, IV, Duke University, Mathematics Department, Durham, N.C., 1980. MR 558224
- Spencer Bloch, Algebraic cycles and the Beĭlinson conjectures, The Lefschetz centennial conference, Part I (Mexico City, 1984) Contemp. Math., vol. 58, Amer. Math. Soc., Providence, RI, 1986, pp. 65–79. MR 860404, DOI https://doi.org/10.1090/conm/058.1/860404
- Jim Bryan and Naichung Conan Leung, The enumerative geometry of $K3$ surfaces and modular forms, J. Amer. Math. Soc. 13 (2000), no. 2, 371–410. MR 1750955, DOI https://doi.org/10.1090/S0894-0347-00-00326-X
- Xi Chen, Rational curves on $K3$ surfaces, J. Algebraic Geom. 8 (1999), no. 2, 245–278. MR 1675158
- Xi Chen, A simple proof that rational curves on $K3$ are nodal, Math. Ann. 324 (2002), no. 1, 71–104. MR 1931759, DOI https://doi.org/10.1007/s00208-002-0329-1
- A. Collino, Griffiths’ infinitesimal invariant and higher $K$-theory on hyperelliptic Jacobians, J. Algebraic Geom. 6 (1997), no. 3, 393–415. MR 1487220
- Alberto Collino, Indecomposable motivic cohomology classes on quartic surfaces and on cubic fourfolds, Algebraic $K$-theory and its applications (Trieste, 1997) World Sci. Publ., River Edge, NJ, 1999, pp. 370–402. MR 1715883
- Hélène Esnault and Eckart Viehweg, Deligne-Beĭlinson cohomology, Beĭlinson’s conjectures on special values of $L$-functions, Perspect. Math., vol. 4, Academic Press, Boston, MA, 1988, pp. 43–91. MR 944991
- B. Brent Gordon and James D. Lewis, Indecomposable higher Chow cycles on products of elliptic curves, J. Algebraic Geom. 8 (1999), no. 3, 543–567. MR 1689357
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1994. Reprint of the 1978 original. MR 1288523
- Mark Green and Stefan Müller-Stach, Algebraic cycles on a general complete intersection of high multi-degree of a smooth projective variety, Compositio Math. 100 (1996), no. 3, 305–309. MR 1387668
- Phillip A. Griffiths, Periods of integrals on algebraic manifolds. III. Some global differential-geometric properties of the period mapping, Inst. Hautes Études Sci. Publ. Math. 38 (1970), 125–180. MR 282990
- Uwe Jannsen, Deligne homology, Hodge-${\scr D}$-conjecture, and motives, Beĭlinson’s conjectures on special values of $L$-functions, Perspect. Math., vol. 4, Academic Press, Boston, MA, 1988, pp. 305–372. MR 944998
- Serge Lang, Hyperbolic and Diophantine analysis, Bull. Amer. Math. Soc. (N.S.) 14 (1986), no. 2, 159–205. MR 828820, DOI https://doi.org/10.1090/S0273-0979-1986-15426-1
- Marc Levine, Localization on singular varieties, Invent. Math. 91 (1988), no. 3, 423–464. MR 928491, DOI https://doi.org/10.1007/BF01388780
- James D. Lewis, Regulators of Chow cycles on Calabi-Yau varieties, Calabi-Yau varieties and mirror symmetry (Toronto, ON, 2001) Fields Inst. Commun., vol. 38, Amer. Math. Soc., Providence, RI, 2003, pp. 87–117. MR 2019148
- D. Mumford, Rational equivalence of $0$-cycles on surfaces, J. Math. Kyoto Univ. 9 (1968), 195–204. MR 249428, DOI https://doi.org/10.1215/kjm/1250523940
- Stefan J. Müller-Stach, Constructing indecomposable motivic cohomology classes on algebraic surfaces, J. Algebraic Geom. 6 (1997), no. 3, 513–543. MR 1487225
- B. Brent Gordon, James D. Lewis, Stefan Müller-Stach, Shuji Saito, and Noriko Yui (eds.), The arithmetic and geometry of algebraic cycles, NATO Science Series C: Mathematical and Physical Sciences, vol. 548, Kluwer Academic Publishers, Dordrecht, 2000. MR 1746324
- Shigefumi Mori and Shigeru Mukai, The uniruledness of the moduli space of curves of genus $11$, Algebraic geometry (Tokyo/Kyoto, 1982) Lecture Notes in Math., vol. 1016, Springer, Berlin, 1983, pp. 334–353. MR 726433, DOI https://doi.org/10.1007/BFb0099970
- Madhav V. Nori, Algebraic cycles and Hodge-theoretic connectivity, Invent. Math. 111 (1993), no. 2, 349–373. MR 1198814, DOI https://doi.org/10.1007/BF01231292
- Shuji Saito, Motives and filtrations on Chow groups, Invent. Math. 125 (1996), no. 1, 149–196. MR 1389964, DOI https://doi.org/10.1007/s002220050072
- I. I. Pjateckiĭ-Šapiro and I. R. Šafarevič, Torelli’s theorem for algebraic surfaces of type ${\rm K}3$, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 530–572 (Russian). MR 0284440
- Andreas Rosenschon and Morihiko Saito, Cycle map for strictly decomposable cycles, Amer. J. Math. 125 (2003), no. 4, 773–790. MR 1993741
- Shing-Tung Yau and Eric Zaslow, BPS states, string duality, and nodal curves on $K3$, Nuclear Phys. B 471 (1996), no. 3, 503–512. MR 1398633, DOI https://doi.org/10.1016/0550-3213%2896%2900176-9
[Bei1]Bei1 A. Beilinson, Higher regulators and values of $L$-functions, J. Soviet math. 30, 1985, 2036–2070.
[Bei2]Bei2 ---, Notes on absolute Hodge cohomology, In: Contemp. Math. 55, Part I, AMS, pp. 35-68 (1985).
[Blo1]Blo1 S. Bloch, Algebraic cycles and higher $K$-theory, Adv. Math. 61, 1986, 267–304.
[Blo2]Blo2 ---, Lectures on Algebraic Cycles, Duke University Mathematics Series IV, Duke University, Mathematics Department, Durham, N.C., 1980. 182 pp. (not consecutively paged).
[Blo3]Blo3 ---, Algebraic cycles and the Beilinson conjectures, Cont. Math. 58 (1) (1986), 65–79.
[B-L]BL J. Bryan and N.C. Leung, The Enumerative Geometry of K3 surfaces and Modular Forms, J. Amer. Math. Soc. 13 (2000), no. 2, 371–410 (electronic). Also preprint alg-geom/9711031.
[C1]C1 X. Chen, Rational Curves on K3 Surfaces, J. Alg. Geom. 8 (1999), 245-278. Also preprint math.AG/9804075.
[C2]C2 ---, A simple proof that rational curves on K3 are nodal, Math. Ann. 324 (2002), no. 1, 71–104. Also preprint math.AG/0011190.
[Co1]Co1 A. Collino, Griffiths’ infinitesimal invariant and higher $K$-theory on hyperelliptic jacobians, J. Alg. Geom. 6, 1997, 393–415.
[Co2]Co2 ---, Indecomposable motivic cohomology classes on quartic surfaces and on cubic fourfolds. Algebraic $K$-theory and its applications (Trieste, 1997), 370–402, World Sci. Publishing, River Edge, NJ, 1999.
[EV]EV H. Esnault and E. Viehweg, Deligne-Beilinson cohomology, in Beilinson’s Conjectures on Special Values of $L$-Functions, (Rapoport, Schappacher, Schneider, eds.), Perspect. Math. 4, Academic Press, 1988, 43–91.
[GL]GL B. Gordon and J. Lewis, Indecomposable higher Chow cycles on products of elliptic curves, J. Alg. Geometry 8, (1999), 543–567.
[GH]GH P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiley & Sons, New York, 1978.
[G-S]GS M. Green and S. Müller-Stach, Algebraic cycles on a general complete intersection of high multi-degree of a smooth projective variety, Comp. Math. 100 (3), 305–309 (1996).
[Gr]Gr P. Griffiths, Periods of integrals on algebraic manifolds, III. Pub. Math. I.H.E.S. 38, 125–180 (1970).
[Ja]Ja U. Jannsen, Deligne cohomology, Hodge-${\mathcal D}$-conjecture, and motives, in Beilinson’s Conjectures on Special Values of $L$-Functions, (Rapoport, Schappacher, Schneider, eds.), Perspect. Math. 4, Academic Press, 1988, 305–372.
[La]La S. Lang, Hyperbolic and Diophantine analysis, Bull. Amer. Math. Soc. (N.S.) 14 (1986), no. 2, 159–205.
[Lev]Lev M. Levine, Localization on singular varieties, Invent. Math. 91, 1988, 423–464.
[Lw1]Lw1 J. D. Lewis, Regulators of Chow cycles on Calabi-Yau varieties, Proceedings of the Field’s Institute Workshop, “Arithmetic, Geometry and Physics around Calabi-Yau Varieties and Mirror Symmetry”, July 22–29, 2001, Fields Inst. Commun., 38, Amer. Math. Soc., Providence, RI, 2003.
[Md]Md D. Mumford, Rational equivalence of $0$-cycles on surfaces, J. Math. Kyoto Univ. 9 (1968), 195–204.
[MS1]MS1 S. Müller-Stach, Constructing indecomposable motivic cohomology classes on algebraic surfaces, J. Alg. Geom. 6, 1997, 513–543.
[MS2]MS2 ---, Algebraic cycle complexes, in Proceedings of the NATO Advanced Study Institute on the Arithmetic and Geometry of Algebraic Cycles Vol. 548, (Lewis, Yui, Gordon, Müller-Stach, S. Saito, eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, (2000), 285–305.
[Mo]Mo S. Mori and S. Mukai, The uniruledness of the moduli space of curves of genus $11$, Algebraic Geometry (Tokyo/Kyoto, 1982) Lecture Notes in Math.1016, (1993), 334–353, Springer, Berlin, 1983.
[No]No M. Nori, Algebraic cycles and Hodge theoretic connectivity, Invent. math. 111, (1993), 349–373.
[Sa]Sa S. Saito, Motives and filtrations on Chow groups, Invent. math. 125, (1996), 149–196.
[S-S]SS I. I. Pjateckiĭ-Šapiro and I. R. Šafarevič, A Torelli theorem for surfaces of type K3, Math. USSR Izvestija, Vol. 5, No. 3 (1971), 547–588.
[RS]RS A. Rosenschon and M. Saito, Cycle map for strictly decomposable cycles, Amer. J. Math 125 (2003), 773–790.
[Y-Z]YZ Yau S.T. and Zaslow E., BPS States, String Duality, and Nodal Curves on K3, Nuclear Physics B 471(3), (1996) 503-512. Also preprint hep-th/9512121.
Additional Information
Xi Chen
Affiliation:
632 Central Academic Building, University of Alberta, Edmonton, Alberta T6G 2G1, Canada
Email:
xichen@math.ualberta.ca
James D. Lewis
Affiliation:
632 Central Academic Building, University of Alberta, Edmonton, Alberta T6G 2G1, CANADA
MR Author ID:
204180
Email:
lewisjd@gpu.srv.ualberta.ca
Received by editor(s):
April 11, 2003
Received by editor(s) in revised form:
November 2, 2003
Published electronically:
December 30, 2004
Additional Notes:
Both authors were partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada