Effective divisors on $\overline {\mathcal {M}}_g$, curves on $K3$ surfaces, and the slope conjecture
Authors:
Gavril Farkas and Mihnea Popa
Journal:
J. Algebraic Geom. 14 (2005), 241-267
DOI:
https://doi.org/10.1090/S1056-3911-04-00392-3
Published electronically:
November 18, 2004
MathSciNet review:
2123229
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We compute the class of the compactification of the divisor of curves sitting on a $K3$ surface and show that it violates the Harris-Morrison Slope Conjecture. We carry this out using the fact that this divisor has four distinct incarnations as a geometric subvariety of the moduli space of curves. We also give a counterexample to a hypothesis raised by Harris and Morrison that the Brill-Noether divisors are essentially the only effective divisors on the moduli space of curves having minimal slope $6+12/(g+1)$.
- Enrico Arbarello and Maurizio Cornalba, Calculating cohomology groups of moduli spaces of curves via algebraic geometry, Inst. Hautes Études Sci. Publ. Math. 88 (1998), 97–127 (1999). MR 1733327
- Mei-Chu Chang and Ziv Ran, On the slope and Kodaira dimension of $\overline M_g$ for small $g$, J. Differential Geom. 34 (1991), no. 1, 267–274. MR 1114463
- Maurizio Cornalba and Joe Harris, Divisor classes associated to families of stable varieties, with applications to the moduli space of curves, Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 3, 455–475. MR 974412
- Fernando Cukierman, Families of Weierstrass points, Duke Math. J. 58 (1989), no. 2, 317–346. MR 1016424, DOI https://doi.org/10.1215/S0012-7094-89-05815-8
- Fernando Cukierman and Douglas Ulmer, Curves of genus ten on $K3$ surfaces, Compositio Math. 89 (1993), no. 1, 81–90. MR 1248892
- David Eisenbud and Joe Harris, Limit linear series: basic theory, Invent. Math. 85 (1986), no. 2, 337–371. MR 846932, DOI https://doi.org/10.1007/BF01389094
- David Eisenbud and Joe Harris, Irreducibility of some families of linear series with Brill-Noether number $-1$, Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 1, 33–53. MR 985853
- David Eisenbud and Joe Harris, The Kodaira dimension of the moduli space of curves of genus $\geq 23$, Invent. Math. 90 (1987), no. 2, 359–387. MR 910206, DOI https://doi.org/10.1007/BF01388710
- D. Eisenbud and J. Harris, A simpler proof of the Gieseker-Petri theorem on special divisors, Invent. Math. 74 (1983), no. 2, 269–280. MR 723217, DOI https://doi.org/10.1007/BF01394316
- Gavril Farkas, The geometry of the moduli space of curves of genus 23, Math. Ann. 318 (2000), no. 1, 43–65. MR 1785575, DOI https://doi.org/10.1007/s002080000108
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley-Interscience [John Wiley & Sons], New York, 1978. Pure and Applied Mathematics. MR 507725
- R. Hartshorne and A. Hirschowitz, Smoothing algebraic space curves, Algebraic geometry, Sitges (Barcelona), 1983, Lecture Notes in Math., vol. 1124, Springer, Berlin, 1985, pp. 98–131. MR 805332, DOI https://doi.org/10.1007/BFb0074998
- J. Harris, On the Kodaira dimension of the moduli space of curves. II. The even-genus case, Invent. Math. 75 (1984), no. 3, 437–466. MR 735335, DOI https://doi.org/10.1007/BF01388638
- Klaus Hulek, Projective geometry of elliptic curves, Astérisque 137 (1986), 143 (English, with French summary). MR 845383
- J. Harris and I. Morrison, Slopes of effective divisors on the moduli space of stable curves, Invent. Math. 99 (1990), no. 2, 321–355. MR 1031904, DOI https://doi.org/10.1007/BF01234422
- Robert Lazarsfeld, Brill-Noether-Petri without degenerations, J. Differential Geom. 23 (1986), no. 3, 299–307. MR 852158
- Adam Logan, The Kodaira dimension of moduli spaces of curves with marked points, Amer. J. Math. 125 (2003), no. 1, 105–138. MR 1953519
- Eduard Looijenga, Compactifications defined by arrangements. I. The ball quotient case, Duke Math. J. 118 (2003), no. 1, 151–187. MR 1978885, DOI https://doi.org/10.1215/S0012-7094-03-11816-5
- Shigeru Mukai, Fano $3$-folds, Complex projective geometry (Trieste, 1989/Bergen, 1989) London Math. Soc. Lecture Note Ser., vol. 179, Cambridge Univ. Press, Cambridge, 1992, pp. 255–263. MR 1201387, DOI https://doi.org/10.1017/CBO9780511662652.018
- Shigeru Mukai, Curves and $K3$ surfaces of genus eleven, Moduli of vector bundles (Sanda, 1994; Kyoto, 1994) Lecture Notes in Pure and Appl. Math., vol. 179, Dekker, New York, 1996, pp. 189–197. MR 1397987
- Kapil Paranjape and S. Ramanan, On the canonical ring of a curve, Algebraic geometry and commutative algebra, Vol. II, Kinokuniya, Tokyo, 1988, pp. 503–516. MR 977775
- Sheng-Li Tan, On the slopes of the moduli spaces of curves, Internat. J. Math. 9 (1998), no. 1, 119–127. MR 1612259, DOI https://doi.org/10.1142/S0129167X98000087
- Claire Voisin, Sur l’application de Wahl des courbes satisfaisant la condition de Brill-Noether-Petri, Acta Math. 168 (1992), no. 3-4, 249–272 (French). MR 1161267, DOI https://doi.org/10.1007/BF02392980
- Claire Voisin, Green’s generic syzygy conjecture for curves of even genus lying on a $K3$ surface, J. Eur. Math. Soc. (JEMS) 4 (2002), no. 4, 363–404. MR 1941089, DOI https://doi.org/10.1007/s100970200042
[V3]Voisin3 C. Voisin, Green’s canonical syzygy conjecture for generic curves of odd genus, math.AG/0301359.
- Jonathan M. Wahl, The Jacobian algebra of a graded Gorenstein singularity, Duke Math. J. 55 (1987), no. 4, 843–871. MR 916123, DOI https://doi.org/10.1215/S0012-7094-87-05540-2
[AC]arbarello-cornalba E. Arbarello and M. Cornalba, Calculating cohomology groups of moduli spaces of curves via algebraic geometry, Inst. Hautes Etudes Sci. Publ. Math. 88 (1998), 97–127.
[CR]chang-ran M.-C. Chang and Z. Ran, On the slope and Kodaira dimension of $\overline {\mathcal {M}}_g$ for small $g$, J. Diff. Geom. 34 (1991), 267–274.
[CH]CH M. Cornalba and J. Harris, Divisor classes associated to stable varieties with applications to the moduli space of curves, Ann. Sci. Ec. Norm. Sup. 21 (1988), 455-475.
[Ck]cukierman F. Cukierman, Families of Weierstrass points, Duke Math. J. 58 (1989), 317–346.
[CU]cukierman-ulmer F. Cukierman and D. Ulmer, Curves of genus $10$ on $K3$ surfaces, Compositio Math. 89 (1993), 81–90.
[EH1]EH1 D. Eisenbud and J. Harris, Limit linear series: basic theory, Invent. Math. 85 (1986), 337–371.
[EH2]EH2 D. Eisenbud and J. Harris, Irreducibility of some families of linear series with Brill-Noether number, I, Ann. Scient. Ec. Norm. Sup.(4) 22 (1989), 33–53.
[EH3]EH3 D. Eisenbud and J. Harris, The Kodaira dimension of the moduli space of curves of genus $\geq 23,$ Invent. Math. 90 (1987), 359–387.
[EH4]EH4 D. Eisenbud and J. Harris, A simpler proof of the Gieseker-Petri Theorem on special divisors, Invent. Math. 74 (1983), 269–280.
[F]F G. Farkas, The geometry of the moduli space of curves of genus $23$, Math. Ann. 318 (2000), 43-65.
[GH]griffiths-harris P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley-Interscience, 1978.
[HH]hh R. Hartshorne and A. Hirschowitz, Smoothing algebraic space curves, in: Algebraic Geometry: Sitges, Barcelona, Lecture Notes in Mathematics 1124 (1983), 98–131.
[Ha]Ha J. Harris, On the Kodaira dimension of the moduli space of curves II: The even genus case, Invent. Math. 75 (1984), 437–466.
[Hu]Hu K. Hulek, Projective geometry of elliptic curves, Asterisque 137 (1986).
[HM]harris-morrison J. Harris and I. Morrison, Slopes of effective divisors on the moduli space of stable curves, Invent. Math. 99 (1990), 321–355.
[La]Laz R. Lazarsfeld, Brill-Noether-Petri without degenerations, J. Diff. Geom. 23 (1986), 299-307.
[Log]Lo A. Logan, The Kodaira dimension of moduli spaces of curves with marked points, Amer. J. of Math. 125 (2003), 105–138.
[Loo]Loo E. Looijenga, Compactifications defined by arrangements II: locally symmetric varieties of type IV, Duke Math. J. 119 (2003), 527–588.
[M1]Mukai1 S. Mukai, Fano $3$-folds, in: Complex Projective Geometry, London Math. Soc. Lecture Notes Ser. 179, Cambridge University Press (1992), 255–263.
[M2]Mukai2 S. Mukai, Curves and $K3$ surfaces of genus eleven, in: Moduli of vector bundles, Lecture Notes in Pure and Appl. Math. 179, Dekker (1996), 189–197.
[PR]pr K. Paranjape and S. Ramanan, On the canonical ring of a curve, in: Algebraic Geometry and Commutative Algebra, Kinokuniya, Tokyo, 1988, 503–516.
[Ta]tan S.-L. Tan, On the slopes of the moduli spaces of curves, Int. J. Math. 9 (1998), 119–127.
[V1]Voisin1 C. Voisin, Sur l’application de Wahl des courbes satisfaisant la condition de Brill-Noether-Petri, Acta Math. 168 (1992), 249–272.
[V2]Voisin2 C. Voisin, Green’s generic syzygy conjecture for curves of even genus lying on a $K3$ surface, J. Eur. Math. Soc. 4 (2002), 363-404.
[V3]Voisin3 C. Voisin, Green’s canonical syzygy conjecture for generic curves of odd genus, math.AG/0301359.
[W]Wahl J. Wahl, The Jacobian algebra of a graded Gorenstein singularity, Duke Math. J. 55 (1987), 843–871.
Additional Information
Gavril Farkas
Affiliation:
Department of Mathematics, Princeton University, Fine Hall, Princeton, New Jersey 08544
Address at time of publication:
Department of Mathematics, University of Texas at Austin, 1 University Station C1200, Austin, Texas 78712
Email:
gfarkas@math.princeton.edu
Mihnea Popa
Affiliation:
Department of Mathematics, Harvard University, One Oxford Street, Cambridge, Massachusetts 02138
MR Author ID:
653676
Email:
mpopa@math.harvard.edu
Received by editor(s):
May 16, 2003
Published electronically:
November 18, 2004
Additional Notes:
The first author’s research was partially supported by NSF Grant DMS-0140520. The second author’s research was partially supported by NSF Grant DMS-0200150