Log-terminal singularities and vanishing theorems via non-standard tight closure
Author:
Hans Schoutens
Journal:
J. Algebraic Geom. 14 (2005), 357-390
DOI:
https://doi.org/10.1090/S1056-3911-04-00395-9
Published electronically:
December 30, 2004
MathSciNet review:
2123234
Full-text PDF
Abstract |
References |
Additional Information
Abstract: Generalizing work of Smith and Hara, we give a new characterization of log-terminal singularities for finitely generated algebras over $\mathbb C$, in terms of purity properties of ultraproducts of characteristic $p$ Frobenii. As a first application we obtain a Boutot-type theorem for log-terminal singularities: given a pure morphism $Y\to X$ between affine $\mathbb Q$-Gorenstein varieties of finite type over $\mathbb C$, if $Y$ has at most log-terminal singularities, then so does $X$. The second application is the Vanishing for Maps of Tor for log-terminal singularities: if $A\subseteq R$ is a Noether Normalization of a finitely generated $\mathbb C$-algebra $R$ and $S$ is an $R$-algebra of finite type with log-terminal singularities, then the natural morphism $\operatorname {Tor}^A_i(M,R) \to \operatorname {Tor}^A_i(M,S)$ is zero, for every $A$-module $M$ and every $i\geq 1$. The final application is Kawamata-Viehweg Vanishing for a connected projective variety $X$ of finite type over $\mathbb C$ whose affine cone has a log-terminal vertex (for some choice of polarization). As a corollary, we obtain a proof of the following conjecture of Smith: if $G$ is the complexification of a real Lie group acting algebraically on a projective smooth Fano variety $X$, then for any numerically effective line bundle $\mathcal L$ on any GIT quotient $Y:=X/\!/G$, each cohomology module $H^i(Y,\mathcal L)$ vanishes for $i>0$, and, if $\mathcal L$ is moreover big, then $H^i(Y,\mathcal L^{-1})$ vanishes for $i<\operatorname {dim}Y$.
SchAsc M. Aschenbrenner and H. Schoutens, Lefschetz extensions, tight closure and big Cohen-Macaulay algebras, manuscript, 2003.
- Jean-François Boutot, Singularités rationnelles et quotients par les groupes réductifs, Invent. Math. 88 (1987), no. 1, 65–68 (French). MR 877006, DOI https://doi.org/10.1007/BF01405091
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- Lawrence Ein, Robert Lazarsfeld, and Karen E. Smith, Uniform bounds and symbolic powers on smooth varieties, Invent. Math. 144 (2001), no. 2, 241–252. MR 1826369, DOI https://doi.org/10.1007/s002220100121
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. 24 (1965), 231 (French). MR 199181
- Nobuo Hara, A characterization of rational singularities in terms of injectivity of Frobenius maps, Amer. J. Math. 120 (1998), no. 5, 981–996. MR 1646049
- Nobuo Hara and Kei-Ichi Watanabe, F-regular and F-pure rings vs. log terminal and log canonical singularities, J. Algebraic Geom. 11 (2002), no. 2, 363–392. MR 1874118, DOI https://doi.org/10.1090/S1056-3911-01-00306-X
- Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
- Melvin Hochster, Cyclic purity versus purity in excellent Noetherian rings, Trans. Amer. Math. Soc. 231 (1977), no. 2, 463–488. MR 463152, DOI https://doi.org/10.1090/S0002-9947-1977-0463152-5
- Melvin Hochster and Craig Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), no. 1, 31–116. MR 1017784, DOI https://doi.org/10.1090/S0894-0347-1990-1017784-6
- Melvin Hochster and Craig Huneke, Applications of the existence of big Cohen-Macaulay algebras, Adv. Math. 113 (1995), no. 1, 45–117. MR 1332808, DOI https://doi.org/10.1006/aima.1995.1035
HHZero ---, Tight closure in equal characteristic zero, preprint on http://www.math.lsa. umich.edu/˜hochster/tcz.ps.Z, 2000.
- Melvin Hochster and Craig Huneke, Comparison of symbolic and ordinary powers of ideals, Invent. Math. 147 (2002), no. 2, 349–369. MR 1881923, DOI https://doi.org/10.1007/s002220100176
- Melvin Hochster and Joel L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math. 13 (1974), 115–175. MR 347810, DOI https://doi.org/10.1016/0001-8708%2874%2990067-X
- Craig Huneke, Tight closure and its applications, CBMS Regional Conference Series in Mathematics, vol. 88, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1996. With an appendix by Melvin Hochster. MR 1377268
- Eero Hyry and Karen E. Smith, Core versus graded core, and global sections of line bundles, Trans. Amer. Math. Soc. 356 (2004), no. 8, 3143–3166. MR 2052944, DOI https://doi.org/10.1090/S0002-9947-03-03337-3
- Yujiro Kawamata, Elementary contractions of algebraic $3$-folds, Ann. of Math. (2) 119 (1984), no. 1, 95–110. MR 736561, DOI https://doi.org/10.2307/2006964
- János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959
LRT N. Lauritzen, U. Raben-Pedersen, and J. Thomsen, Global F-regularity of Schubert varieties with applications to D-modules [arXiv.org/abs/math.AG/0402052], 2004.
- Joseph Lipman and Bernard Teissier, Pseudorational local rings and a theorem of Briançon-Skoda about integral closures of ideals, Michigan Math. J. 28 (1981), no. 1, 97–116. MR 600418
- Gennady Lyubeznik and Karen E. Smith, Strong and weak $F$-regularity are equivalent for graded rings, Amer. J. Math. 121 (1999), no. 6, 1279–1290. MR 1719806
MacC B. MacCrimmon, Strong F-regularity and boundedness questions in tight closure, Ph.D. thesis, University of Michigan, Ann Arbor, 1996.
- V. B. Mehta and A. Ramanathan, Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. of Math. (2) 122 (1985), no. 1, 27–40. MR 799251, DOI https://doi.org/10.2307/1971368
- James S. Milne, Étale cohomology, Princeton Mathematical Series, No. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531
Nak N. Nakayama, Zariski-decomposition and abundance, RIMS preprint series 1142 (1997).
- L. van den Dries and K. Schmidt, Bounds in the theory of polynomial rings over fields. A nonstandard approach, Invent. Math. 76 (1984), no. 1, 77–91. MR 739626, DOI https://doi.org/10.1007/BF01388493
- Hans Schoutens, Existentially closed models of the theory of Artinian local rings, J. Symbolic Logic 64 (1999), no. 2, 825–845. MR 1777790, DOI https://doi.org/10.2307/2586504
- Hans Schoutens, Bounds in cohomology, Israel J. Math. 116 (2000), 125–169. MR 1759403, DOI https://doi.org/10.1007/BF02773216
- Hans Schoutens, Lefschetz principle applied to symbolic powers, J. Algebra Appl. 2 (2003), no. 2, 177–187. MR 1980407, DOI https://doi.org/10.1142/S0219498803000490
- Hans Schoutens, Non-standard tight closure for affine $\Bbb C$-algebras, Manuscripta Math. 111 (2003), no. 3, 379–412. MR 1993501, DOI https://doi.org/10.1007/s00229-003-0380-6
- Hans Schoutens, A non-standard proof of the Briançon-Skoda theorem, Proc. Amer. Math. Soc. 131 (2003), no. 1, 103–112. MR 1929029, DOI https://doi.org/10.1090/S0002-9939-02-06556-5
- Hans Schoutens, Canonical big Cohen-Macaulay algebras and rational singularities, Illinois J. Math. 48 (2004), no. 1, 131–150. MR 2048219
SchBArt ---, Bounds in polynomial rings over Artinian local rings, (2003) manuscript, in preparation.
SchRatSing ---, Rational singularities and non-standard tight closure, (2004), in preparation.
- Karen E. Smith, $F$-rational rings have rational singularities, Amer. J. Math. 119 (1997), no. 1, 159–180. MR 1428062
- Karen E. Smith, Vanishing, singularities and effective bounds via prime characteristic local algebra, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 289–325. MR 1492526
- Karen E. Smith, Globally F-regular varieties: applications to vanishing theorems for quotients of Fano varieties, Michigan Math. J. 48 (2000), 553–572. Dedicated to William Fulton on the occasion of his 60th birthday. MR 1786505, DOI https://doi.org/10.1307/mmj/1030132733
- Lou van den Dries, Algorithms and bounds for polynomial rings, Logic Colloquium ’78 (Mons, 1978) Stud. Logic Foundations Math., vol. 97, North-Holland, Amsterdam-New York, 1979, pp. 147–157. MR 567669
- Keiichi Watanabe, $F$-regular and $F$-pure normal graded rings, J. Pure Appl. Algebra 71 (1991), no. 2-3, 341–350. MR 1117644, DOI https://doi.org/10.1016/0022-4049%2891%2990157-W
- Kei-ichi Watanabe, Characterizations of singularities in characteristic $0$ via Frobenius map, Commutative algebra, algebraic geometry, and computational methods (Hanoi, 1996) Springer, Singapore, 1999, pp. 155–169. MR 1714856
SchAsc M. Aschenbrenner and H. Schoutens, Lefschetz extensions, tight closure and big Cohen-Macaulay algebras, manuscript, 2003.
Bou J.-F. Boutot, Singularités rationelles et quotients par les groupes réductifs, Invent. Math. 88 (1987), 65–68.
BH W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge University Press, Cambridge, 1993.
ELS L. Ein, R. Lazarsfeld, and K. Smith, Uniform bounds and symbolic powers on smooth varieties, Invent. Math. 144 (2001), 241–252.
Eis D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995.
Ful W. Fulton, Intersection theory, Springer, 1998.
EGA A. Grothendieck and J. Dieudonné, Elements de géométrie algébrique I-IV, Inst. Hautes Études Sci. Publ. Math., vol. 4, 8, 11, 17, 20, 24, 28, Presses universitaires de France, Paris, 1960-1965.
HaRat N. Hara, A characterization of rational singularities in terms of injectivity of Frobenius maps, Amer. J. Math. 120 (1998), 981–996.
HW N. Hara and K. I. Watanabe, F-regular and F-pure rings vs. log-terminal and log-canonical singularities, J. Alg. Geom. 11 (2002), 363–392.
Hart R. Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977.
HoPure M. Hochster, Cyclic purity versus purity in excellent Noetherian rings, Trans. Amer. Math. Soc. 231 (1977), 463–488.
HHTC M. Hochster and C. Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), 31–116.
HHbigCM2 ---, Applications of the existence of big Cohen-Macaulay algebras, Adv. in Math. 113 (1995), 45–117.
HHZero ---, Tight closure in equal characteristic zero, preprint on http://www.math.lsa. umich.edu/˜hochster/tcz.ps.Z, 2000.
HHComp ---, Comparison of symbolic and ordinary powers of ideals, Invent. Math. 147 (2002), 349–369.
HR M. Hochster and J. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Adv. in Math. 13 (1974), 115–175.
HuTC C. Huneke, Tight closure and its applications, CBMS Regional Conf. Ser. in Math, vol. 88, Amer. Math. Soc., 1996.
HySm E. Hyry and K. Smith, Core versus graded core, and global sections of line bundles, Trans. Amer. Math. Soc. 356 (2004), no. 8, 3143–3166.
Kaw Y. Kawamata, The cone of curves of algebraic varieties, Ann. of Math. 119 (1984), 603–633.
KM J. Kollár and S. Mori, Birational geometry and algebraic varieties, Cambridge University Press, Cambridge, 1998.
LRT N. Lauritzen, U. Raben-Pedersen, and J. Thomsen, Global F-regularity of Schubert varieties with applications to D-modules [arXiv.org/abs/math.AG/0402052], 2004.
LT J. Lipman and B. Teissier, Pseudo-rational local rings and a theorem of Briançon-Skoda about integral closures of ideals, Michigan Math. J. 28 (1981), 97–116.
LyuSm G. Lyubeznik and K. Smith, Strong and weakly F-regularity are equivalent for graded rings, Amer. J. Math. 121 (1999), 1279–1290.
MacC B. MacCrimmon, Strong F-regularity and boundedness questions in tight closure, Ph.D. thesis, University of Michigan, Ann Arbor, 1996.
MR V. Mehta and A. Ramanathan, Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. of Math. 122 (1985), 27–40.
Milne J. Milne, Etale cohomology, 33, Princeton Math., 1980.
Nak N. Nakayama, Zariski-decomposition and abundance, RIMS preprint series 1142 (1997).
SvdD K. Schmidt and L. van den Dries, Bounds in the theory of polynomial rings over fields. A non-standard approach, Invent. Math. 76 (1984), 77–91.
SchEC H. Schoutens, Existentially closed models of the theory of Artinian local rings, J. Symbolic Logic 64 (1999), 825–845.
SchBC ---, Bounds in cohomology, Israel J. Math. 116 (2000), 125–169.
SchSymPow ---, Lefschetz principle applied to symbolic powers, J. Algebra Appl. 2 (2003), 177–187.
SchNSTC ---, Non-standard tight closure for affine $\mathbb C$-algebras, Manuscripta Math. 111 (2003), 379–412.
SchBS ---, A non-standard proof of the Briançon-Skoda theorem, Proc. Amer. Math. Soc. 131 (2003), 103–112.
SchBCM ---, Canonical big Cohen-Macaulay algebras and rational singularities, Illinois J. Math. 48 (2004), 131–150.
SchBArt ---, Bounds in polynomial rings over Artinian local rings, (2003) manuscript, in preparation.
SchRatSing ---, Rational singularities and non-standard tight closure, (2004), in preparation.
SmFrat K. Smith, F-rational rings have rational singularities, Amer. J. Math. 119 (1997), 159–180.
SmVan ---, Vanishing, singularities and effective bounds via prime characteristic local algebra, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 289–325.
SmFano ---, Globally F-regular varieties: applications to vanishing theorems for quotients of Fano varieties, Michigan Math. J. 48 (2000), 553–572.
vdD79 L. van den Dries, Algorithms and bounds for polynomial rings, Logic Colloquium, 1979, pp. 147–157.
WatF K.-i. Watanabe, F-regular and F-pure normal graded rings, J. Pure Appl. Algebra 71 (1991), 341–350.
Wat ---, Characterization of singularities in characteristic $0$ via Frobenius map, Commutative Algebra, Algebraic Geometry and Computational Methods, Springer-Verlag, 1999, pp. 155–169.
Additional Information
Hans Schoutens
Affiliation:
Department of Mathematics, NYC College of Technology, City University of New York, New York, New York 11201
MR Author ID:
249272
Email:
hschoutens@citytech.cuny.edu
Received by editor(s):
January 28, 2004
Received by editor(s) in revised form:
April 21, 2004
Published electronically:
December 30, 2004
Additional Notes:
Partially supported by a grant from the National Science Foundation and by visiting positions at Paris VII and at the Ecole Normale Supérieure.