Links and analytic invariants of superisolated singularities
Authors:
I. Luengo-Velasco, A. Melle-Hernández and A. Némethi
Journal:
J. Algebraic Geom. 14 (2005), 543-565
DOI:
https://doi.org/10.1090/S1056-3911-05-00397-8
Published electronically:
March 24, 2005
MathSciNet review:
2129010
Full-text PDF
Abstract |
References |
Additional Information
Abstract: Using superisolated singularities we present examples and counterexamples to some of the most important conjectures regarding invariants of normal surface singularities. More precisely, we show that the “Seiberg-Witten invariant conjecture”(of Nicolaescu and the third author), the “Universal abelian cover conjecture” (of Neumann and Wahl) and the “Geometric genus conjecture” fail (at least at that generality in which they were formulated). Moreover, we also show that for Gorenstein singularities (even with integral homology sphere links) besides the geometric genus, the embedded dimension and the multiplicity (in particular, the Hilbert-Samuel function) also fail to be topological; and in general, the Artin cycle does not coincide with the maximal (ideal) cycle.
- Enrique Artal-Bartolo, Forme de Jordan de la monodromie des singularités superisolées de surfaces, Mem. Amer. Math. Soc. 109 (1994), no. 525, x+84 (French, with English summary). MR 1204839, DOI https://doi.org/10.1090/memo/0525
- E. Artal Bartolo, P. Cassou-Noguès, I. Luengo, and A. Melle Hernández, Monodromy conjecture for some surface singularities, Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 4, 605–640 (English, with English and French summaries). MR 1981174, DOI https://doi.org/10.1016/S0012-9593%2802%2901100-X
- Michael Artin, Some numerical criteria for contractability of curves on algebraic surfaces, Amer. J. Math. 84 (1962), 485–496. MR 146182, DOI https://doi.org/10.2307/2372985
- Michael Artin, On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966), 129–136. MR 199191, DOI https://doi.org/10.2307/2373050
- Olivier Collin and Nikolai Saveliev, A geometric proof of the Fintushel-Stern formula, Adv. Math. 147 (1999), no. 2, 304–314. MR 1734525, DOI https://doi.org/10.1006/aima.1999.1842
- Olivier Collin, Equivariant Casson invariant for knots and the Neumann-Wahl formula, Osaka J. Math. 37 (2000), no. 1, 57–71. MR 1750270
- Torsten Fenske, Rational 1- and 2-cuspidal plane curves, Beiträge Algebra Geom. 40 (1999), no. 2, 309–329. MR 1720107
4authors Fernández de Bobadilla, J.; Luengo-Valesco, I.; Melle-Hernández, A. and Némethi, A.: On rational cuspidal projective plane curves, manuscript in preparation.
- Ronald Fintushel and Ronald J. Stern, Instanton homology of Seifert fibred homology three spheres, Proc. London Math. Soc. (3) 61 (1990), no. 1, 109–137. MR 1051101, DOI https://doi.org/10.1112/plms/s3-61.1.109
- G. Fujita, A splicing formula for Casson-Walker’s invariant, Math. Ann. 296 (1993), no. 2, 327–338. MR 1219905, DOI https://doi.org/10.1007/BF01445108
- Henry B. Laufer, On rational singularities, Amer. J. Math. 94 (1972), 597–608. MR 330500, DOI https://doi.org/10.2307/2374639
- Henry B. Laufer, Taut two-dimensional singularities, Math. Ann. 205 (1973), 131–164. MR 333238, DOI https://doi.org/10.1007/BF01350842
- Henry B. Laufer, On minimally elliptic singularities, Amer. J. Math. 99 (1977), no. 6, 1257–1295. MR 568898, DOI https://doi.org/10.2307/2374025
- Henry B. Laufer, On $\mu $ for surface singularities, Several complex variables (Proc. Sympos. Pure Math., Vol. XXX, Part 1, Williams Coll., Williamstown, Mass., 1975) Amer. Math. Soc., Providence, R. I., 1977, pp. 45–49. MR 0450287
- Christine Lescop, Global surgery formula for the Casson-Walker invariant, Annals of Mathematics Studies, vol. 140, Princeton University Press, Princeton, NJ, 1996. MR 1372947
- Ignacio Luengo, The $\mu $-constant stratum is not smooth, Invent. Math. 90 (1987), no. 1, 139–152. MR 906582, DOI https://doi.org/10.1007/BF01389034
- A. Melle-Hernández, Milnor numbers for surface singularities, Israel J. Math. 115 (2000), 29–50. MR 1749672, DOI https://doi.org/10.1007/BF02810579
- Makoto Namba, Geometry of projective algebraic curves, Monographs and Textbooks in Pure and Applied Mathematics, vol. 88, Marcel Dekker, Inc., New York, 1984. MR 768929
- A. Némethi, Five lectures on normal surface singularities, Low dimensional topology (Eger, 1996/Budapest, 1998) Bolyai Soc. Math. Stud., vol. 8, János Bolyai Math. Soc., Budapest, 1999, pp. 269–351. With the assistance of Ágnes Szilárd and Sándor Kovács. MR 1747271
- András Némethi, Dedekind sums and the signature of $f(x,y)+z^N$, Selecta Math. (N.S.) 4 (1998), no. 2, 361–376. MR 1669948, DOI https://doi.org/10.1007/s000290050035
- András Némethi, Dedekind sums and the signature of $f(x,y)+z^N$. II, Selecta Math. (N.S.) 5 (1999), no. 1, 161–179. MR 1694898, DOI https://doi.org/10.1007/s000290050045
- András Némethi, “Weakly” elliptic Gorenstein singularities of surfaces, Invent. Math. 137 (1999), no. 1, 145–167. MR 1703331, DOI https://doi.org/10.1007/s002220050327
NOSZ Némethi, A.: On the Ozsváth-Szabó invariant of negative definite plumbed 3-manifolds, arXiv:math.AG/0310083.
Line Némethi, A.: Line bundles associated with normal surface singularities, arXiv:math.AG/0310084.
- András Némethi, Invariants of normal surface singularities, Real and complex singularities, Contemp. Math., vol. 354, Amer. Math. Soc., Providence, RI, 2004, pp. 161–208. MR 2087811, DOI https://doi.org/10.1090/conm/354/06481
- András Némethi and Liviu I. Nicolaescu, Seiberg-Witten invariants and surface singularities, Geom. Topol. 6 (2002), 269–328. MR 1914570, DOI https://doi.org/10.2140/gt.2002.6.269
- András Némethi and Liviu I. Nicolaescu, Seiberg-Witten invariants and surface singularities. II. Singularities with good $\Bbb C^*$-action, J. London Math. Soc. (2) 69 (2004), no. 3, 593–607. MR 2050035, DOI https://doi.org/10.1112/S0024610704005228
fivefive Némethi, A. and Nicolaescu, L.I.: Seiberg-Witten invariants and surface singularities III (splicings and cyclic covers), arXiv:math.AG/0207018.
- Walter D. Neumann, Abelian covers of quasihomogeneous surface singularities, Singularities, Part 2 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 233–243. MR 713252
- Walter Neumann and Jonathan Wahl, Casson invariant of links of singularities, Comment. Math. Helv. 65 (1990), no. 1, 58–78. MR 1036128, DOI https://doi.org/10.1007/BF02566593
- Walter D. Neumann and Jonathan Wahl, Universal abelian covers of surface singularities, Trends in singularities, Trends Math., Birkhäuser, Basel, 2002, pp. 181–190. MR 1900786
- Walter D. Neumann and Jonathan Wahl, Universal abelian covers of quotient-cusps, Math. Ann. 326 (2003), no. 1, 75–93. MR 1981612, DOI https://doi.org/10.1007/s00208-002-0405-6
NWuj Neumann, W. and Wahl, J.: Complex surface singularities with integral homology sphere links, arXiv:math.AG/0301165.
Ok Okuma, T.: Numerical Gorenstein elliptic singularities, preprint.
- H. Pinkham, Normal surface singularities with $C^ *$ action, Math. Ann. 227 (1977), no. 2, 183–193. MR 432636, DOI https://doi.org/10.1007/BF01350195
GPS01 G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 2.0. A Computer Algebra System for Polynomial Computations. Centre for Computer Algebra, University of Kaiserslautern (2001). http://www.singular.uni-kl.de.
- Masataka Tomari, A $p_g$-formula and elliptic singularities, Publ. Res. Inst. Math. Sci. 21 (1985), no. 2, 297–354. MR 785140, DOI https://doi.org/10.2977/prims/1195179626
- Vladimir Turaev, Torsion invariants of ${\rm Spin}^c$-structures on $3$-manifolds, Math. Res. Lett. 4 (1997), no. 5, 679–695. MR 1484699, DOI https://doi.org/10.4310/MRL.1997.v4.n5.a6
- Jonathan M. Wahl, Equisingular deformations of normal surface singularities. I, Ann. of Math. (2) 104 (1976), no. 2, 325–356. MR 422270, DOI https://doi.org/10.2307/1971049
- Stephen Shing Toung Yau, On almost minimally elliptic singularities, Bull. Amer. Math. Soc. 83 (1977), no. 3, 362–364. MR 432912, DOI https://doi.org/10.1090/S0002-9904-1977-14267-5
- Stephen Shing Toung Yau, On strongly elliptic singularities, Amer. J. Math. 101 (1979), no. 4, 855–884. MR 536043, DOI https://doi.org/10.2307/2373920
- Stephen Shing Toung Yau, On maximally elliptic singularities, Trans. Amer. Math. Soc. 257 (1980), no. 2, 269–329. MR 552260, DOI https://doi.org/10.1090/S0002-9947-1980-0552260-6
- Oscar Zariski, Some open questions in the theory of singularities, Bull. Amer. Math. Soc. 77 (1971), 481–491. MR 277533, DOI https://doi.org/10.1090/S0002-9904-1971-12729-5
Artal Artal Bartolo, E.: Forme de Jordan de la monodromie des singularités superisolées de surfaces, Mem. Amer. Math. Soc. 525, 1994.
aclm Artal Bartolo, E.; Cassou-Noguès, Pi.; Luengo, I.; Melle Hernández, A.: Monodromy conjecture for some surface singularities, Ann. Sci. École Norm. Sup. (4) 35 (2002), 605–640.
Artin62 Artin, M.: Some numerical criteria for contractability of curves on algebraic surfaces, Amer. J. Math. 84 (1962), 485–496.
Artin66 Artin, M.: On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966), 129–136.
CoS Collin, O. and Saveliev, N.: A geometric proof of the Fintushel-Stern formula, Adv. in Math. 147 (1999), 304–314.
CoS3 Collin, O. and Saveliev, N.: Equivariant Casson invariant for knots and the Neumann-Wahl formula, Osaka J. Math. 37 (2000), 57–71.
Fenske Fenske, T.: Rational 1- and 2-cuspidal plane curves, Beiträge Algebra Geom. 40 (1999), 309–329.
4authors Fernández de Bobadilla, J.; Luengo-Valesco, I.; Melle-Hernández, A. and Némethi, A.: On rational cuspidal projective plane curves, manuscript in preparation.
FS Fintushel, R. and Stern, R.J.: Instanton homology of Seifert fibered homology 3–spheres, Proc. London Math. Soc. (3) 61 (1991), 109–137.
fujita Fujita, G.: A splicing formula for the Casson-Walker’s invariant, Math. Ann. 296 (1993), 327–338.
Laufer72 Laufer, H.B.: On rational singularities, Amer. J. Math. 94 (1972), 597–608.
Laufer73 Laufer, H.B.: Taut two-dimensional singularities, Math. Ann. 205 (1973), 131–164.
Laufer77 Laufer, H.B.: On minimally elliptic singularities, Amer. J. Math. 99 (1977), 1257–1295.
Laufer77b Laufer, H.B.: On $\mu$ for surface singularities, Several complex variables (Proc. Sympos. Pure Math. 30, Part 1, Williams Coll., Williamstown, Mass., 1975), 45–49. Amer. Math. Soc., Providence, R. I., 1977.
Lescop Lescop, C.: Global Surgery Formula for the Casson-Walker Invariant, Annals of Math. Studies, vol.140, Princeton University Press, 1996.
Ignacio Luengo, I.: The $\mu$-constant stratum is not smooth, Invent. Math. 90 (1987), 139–152.
Melle Melle-Hernández, A.: Milnor numbers for surface singularities, Israel J. Math. 115 (2000), 29–50.
Namba Namba, M.: Geometry of projective algebraic curves, Monographs and Textbooks in Pure and Applied Mathematics 88 Marcel Dekker, Inc., New York, (1984).
Five Némethi, A.: Five lectures on normal surface singularities, lectures delivered at the Summer School in Low dimensional topology Budapest, Hungary, 1998; Bolyai Society Math. Studies 8 (1999), 269–351.
threesix Némethi, A.: Dedekind sums and the signature of $f(x,y)+z^N$, Selecta Mathematica, New series 4 (1998), 361–376.
threeseven Némethi, A.: Dedekind sums and the signature of $f(x,y)+z^N$, II., Selecta Mathematica, New series 5 (1999), 161–179.
Ninv Némethi, A.: “Weakly” Elliptic Gorenstein Singularities of Surfaces, Invent. math. 137 (1999), 145–167.
NOSZ Némethi, A.: On the Ozsváth-Szabó invariant of negative definite plumbed 3-manifolds, arXiv:math.AG/0310083.
Line Némethi, A.: Line bundles associated with normal surface singularities, arXiv:math.AG/0310084.
INV Némethi, A.: Invariants of normal surface singularities, Proceedings of the Conference: Real and Complex Singularities, San Carlos, Brazil, August 2002; Contemp. Math., 354, pp. 161–208, Amer. Math. Soc., Providence, RI, 2004.
fiveone Némethi, A. and Nicolaescu, L.I.: Seiberg-Witten invariants and surface singularities, Geometry and Topology 6 (2002), 269–328.
fivetwo Némethi, A. and Nicolaescu, L.I.: Seiberg-Witten invariants and surface singularities II (singularities with good $\textbf {C}^*$-action), J. London Math. Soc. (2) 69 (2004), 593–607.
fivefive Némethi, A. and Nicolaescu, L.I.: Seiberg-Witten invariants and surface singularities III (splicings and cyclic covers), arXiv:math.AG/0207018.
Neu Neumann, W.: Abelian covers of quasihomogeneous surface singularities, Singularities, Arcata 1981, Proc. Symp. Pure Math. 40 (Amer. Math. Soc. 1983), 233–243.
NW Neumann, W. and Wahl, J.: Casson invariant of links of singularities, Comment. Math. Helv. 65 (1991), 58–78.
NWnew Neumann, W. and Wahl, J.: Universal abelian covers of surface singularities, Trends on Singularities, A. Libgober and M. Tibar (eds). Birkhäuser Verlag, 2002, 181–190.
NWnew2 Neumann, W. and Wahl, J.: Universal abelian covers of quotient-cusps, Math. Ann. 326 (2003), 75–93.
NWuj Neumann, W. and Wahl, J.: Complex surface singularities with integral homology sphere links, arXiv:math.AG/0301165.
Ok Okuma, T.: Numerical Gorenstein elliptic singularities, preprint.
Pi1 Pinkham, H.: Normal surface singularities with $\textbf {C}^*$–action, Math. Ann. 227 (1977), 183–193.
GPS01 G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 2.0. A Computer Algebra System for Polynomial Computations. Centre for Computer Algebra, University of Kaiserslautern (2001). http://www.singular.uni-kl.de.
To1 Tomari, M.: A $p_g$–formula and elliptic singularities, Publ. R.I.M.S. Kyoto University 21 (1985), 297–354.
Tu5 Turaev, V.G.: Torsion invariants of $Spin^c$-structures on $3$-manifolds, Math. Res. Letters 4 (1997), 679–695.
WahlAnnals Wahl, M.J.: Equisingular deformations of normal surface singularities, I, Ann. of Math. 104 (1976), 325–356.
Yau4 Yau, S.S.-T.: On almost minimally elliptic singularities, Bull. Amer. Math. Soc. 83 (1977), 362–364.
Yau5 Yau, S.S.-T.: On strongly elliptic singularities, Amer. J. Math. 101 (1979), 855–884.
Yau1 Yau, S.S.-T.: On maximally elliptic singularities, Trans. Amer. Math. Soc. 257 (1980), 269–329.
Zariskiconj Zariski, O.: Some open questions in the theory of singularities, Bull. Amer. Math. Soc. 77 (1971), 481–491.
Additional Information
I. Luengo-Velasco
Affiliation:
Facultad de Matemáticas, Universidad Complutense, Plaza de Ciencias, E-28040, Madrid, Spain
Email:
iluengo@mat.ucm.es
A. Melle-Hernández
Affiliation:
Department of Mathematics, Ohio State University, Columbus, Ohio 43210
Email:
amelle@mat.ucm.es
A. Némethi
Affiliation:
Rényi Institute of Mathematics, Budapest, Hungary
Email:
nemethi@math.ohio-state.edu, nemethi@renyi.hu
Received by editor(s):
March 29, 2004
Received by editor(s) in revised form:
June 19, 2004
Published electronically:
March 24, 2005
Additional Notes:
The first two authors are partially supported by BFM2001-1488-C02-01. The third author is partially supported by NSF grant DMS-0304759.