Complex multiplication, Griffiths-Yukawa couplings, and rigidity for families of hypersurfaces
Authors:
Eckart Viehweg and Kang Zuo
Journal:
J. Algebraic Geom. 14 (2005), 481-528
DOI:
https://doi.org/10.1090/S1056-3911-05-00400-5
Published electronically:
February 16, 2005
MathSciNet review:
2129008
Full-text PDF
Abstract |
References |
Additional Information
Abstract: Let $\mathcal {M}_{d,n}$ be the moduli stack of hypersurfaces $X \subset \mathbb {P}^n$ of degree $d\geq n+1$, and let $\mathcal M_{d,n}^{(1)}$ be the sub-stack, parameterizing hypersurfaces obtained as a $d$-fold cyclic covering of $\mathbb {P}^{n-1}$ ramified over a hypersurface of degree $d$. Iterating this construction, one obtains $\mathcal {M}_{d,n}^{(\nu )}$. We show that $\mathcal {M}_{d,n}^{(1)}$ is rigid in $\mathcal {M}_{d,n}$, although for $d<2n$ the Griffiths-Yukawa coupling degenerates. However, for all $d\geq n+1$ the sub-stack $\mathcal {M}^{(2)}_{d,n}$ deforms. We calculate the exact length of the Griffiths-Yukawa coupling over $\mathcal {M}_{d,n}^{(\nu )}$, and we construct a $4$-dimensional family of quintic hypersurfaces $g:\mathcal {Z}\to T$ in $\mathbb {P}^4$, and a dense set of points $t$ in $T$, such that $g^{-1}(t)$ has complex multiplication.
- Daniel Allcock, James A. Carlson, and Domingo Toledo, The complex hyperbolic geometry of the moduli space of cubic surfaces, J. Algebraic Geom. 11 (2002), no. 4, 659–724. MR 1910264, DOI https://doi.org/10.1090/S1056-3911-02-00314-4
- Ciprian Borcea, Calabi-Yau threefolds and complex multiplication, Essays on mirror manifolds, Int. Press, Hong Kong, 1992, pp. 489–502. MR 1191439
- James A. Carlson and Phillip A. Griffiths, Infinitesimal variations of Hodge structure and the global Torelli problem, Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff & Noordhoff, Alphen aan den Rijn—Germantown, Md., 1980, pp. 51–76. MR 605336
- James A. Carlson and Domingo Toledo, Discriminant complements and kernels of monodromy representations, Duke Math. J. 97 (1999), no. 3, 621–648. MR 1682991, DOI https://doi.org/10.1215/S0012-7094-99-09723-5
- Pierre Deligne, Travaux de Shimura, Séminaire Bourbaki, 23ème année (1970/71), Exp. No. 389, Springer, Berlin, 1971, pp. 123–165. Lecture Notes in Math., Vol. 244 (French). MR 0498581
- Pierre Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273–307 (French). MR 340258
- P. Deligne, Un théorème de finitude pour la monodromie, Discrete groups in geometry and analysis (New Haven, Conn., 1984) Progr. Math., vol. 67, Birkhäuser Boston, Boston, MA, 1987, pp. 1–19 (French). MR 900821, DOI https://doi.org/10.1007/978-1-4899-6664-3_1
- Groupes de monodromie en géométrie algébrique. II, Lecture Notes in Mathematics, Vol. 340, Springer-Verlag, Berlin-New York, 1973 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 II); Dirigé par P. Deligne et N. Katz. MR 0354657
- P. Deligne and G. D. Mostow, Monodromy of hypergeometric functions and nonlattice integral monodromy, Inst. Hautes Études Sci. Publ. Math. 63 (1986), 5–89. MR 849651
- Johan de Jong and Rutger Noot, Jacobians with complex multiplication, Arithmetic algebraic geometry (Texel, 1989) Progr. Math., vol. 89, Birkhäuser Boston, Boston, MA, 1991, pp. 177–192. MR 1085259
- Hélène Esnault and Eckart Viehweg, Lectures on vanishing theorems, DMV Seminar, vol. 20, Birkhäuser Verlag, Basel, 1992. MR 1193913
- S. Ferrara and J. Louis, Picard-Fuchs equations and flat holomorphic connections from $N=2$ supergravity, Essays on mirror manifolds, Int. Press, Hong Kong, 1992, pp. 301–315. MR 1191429
- B. van Geemen and E. Izadi, Half twists and the cohomology of hypersurfaces, Math. Z. 242 (2002), no. 2, 279–301. MR 1980624, DOI https://doi.org/10.1007/s002090100334
- Kȩstutis Ivinskis, A variational Torelli theorem for cyclic coverings of high degree, Compositio Math. 85 (1993), no. 2, 201–228. MR 1204780
Laz Lazarsfeld, R.: Positivity in Algebraic Geometry. Part I. Ergebnisse der Math. 3. Folge. 48 (2004), Springer, Berlin-Heidelberg-New York. Part II. Ergebnisse der Math. 3. Folge. 49 (2004), Springer, Berlin-Heidelberg-New York.
LTYZ Liu, K-F., Todorov, A., Yau, S.-T., Zuo, K.: Shafarevich’s conjecture for CY manifolds, I. Preprint, 2002.
- David Mumford, Families of abelian varieties, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 347–351. MR 0206003
- D. Mumford, A note of Shimura’s paper “Discontinuous groups and abelian varieties”, Math. Ann. 181 (1969), 345–351. MR 248146, DOI https://doi.org/10.1007/BF01350672
- Tetsuji Shioda, Algebraic cycles on abelian varieties of Fermat type, Math. Ann. 258 (1981/82), no. 1, 65–80. MR 641669, DOI https://doi.org/10.1007/BF01450347
- Carlos T. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5–95. MR 1179076
- Carlos T. Simpson, Harmonic bundles on noncompact curves, J. Amer. Math. Soc. 3 (1990), no. 3, 713–770. MR 1040197, DOI https://doi.org/10.1090/S0894-0347-1990-1040197-8
- Eckart Viehweg and Kang Zuo, Base spaces of non-isotrivial families of smooth minimal models, Complex geometry (Göttingen, 2000) Springer, Berlin, 2002, pp. 279–328. MR 1922109
- Eckart Viehweg and Kang Zuo, Discreteness of minimal models of Kodaira dimension zero and subvarieties of moduli stacks, Surveys in differential geometry, Vol. VIII (Boston, MA, 2002) Surv. Differ. Geom., vol. 8, Int. Press, Somerville, MA, 2003, pp. 337–356. MR 2039995, DOI https://doi.org/10.4310/SDG.2003.v8.n1.a12
- Claire Voisin, Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés [Specialized Courses], vol. 10, Société Mathématique de France, Paris, 2002 (French). MR 1988456
ACT Allcock, D., Carlson, J., Toledo, D.: The complex hyperbolic geometry of the moduli space of cubic surfaces, J. Algebraic Geom. 11 (2002), 659–724.
Bor Borcea, C.: Calabi-Yau threefolds and complex multiplication, Essays on mirror manifolds, Internat. Press, Hong Kong (1992), 489–502.
CG Carlson, J., Griffiths, P.: Infinitesimal variations of Hodge structures and the global Torelli problem, In: Géométrie algébrique, Angers 1979, Sijthoff and Noordhoff (1980), 51–76.
CT Carlson, J., Toledo, D.: Discriminant complements and kernels of monodromy representations, Duke Math. J. 97 (1999), 621–648.
De2 Deligne, P.: Travaux de Shimura. Seminaire Bourbaki 389 (1970/71), 123–165. Lecture Notes in Math. 244 (1971), Springer, Berlin.
De3 Deligne, P.: La conjecture de Weil, I. Pub. Math. I.H.E.S. 43 (1974), 273–307; II. Pub. Math. I.H.E.S. 52 (1980), 137–252. ;
De1 Deligne, P.: Un théorème de finitude pour la monodromie, Discrete Groups in Geometry and Analysis, Birkhäuser, Progress in Math. 67 (1987), 1–19.
DK Deligne, P., Katz, N.: Groupes de Monodromy en Géométrie Algébrique (SGA VII, 2), Lecture Notes in Math. 340 (1973), Springer, Berlin, Heidelberg, New York.
DM Deligne, P., Mostow, G.: Monodromy of hypergeometric functions and non-lattice integral monodromy. IHES 63 (1986), 5–90.
DeJN De Jong, J., Noot, R.: Jacobian with complex multiplication. Arithmetic algebraic geometry (Texel, 1989). Progr. Math. 89 (1991), 177–192, Birkhäuser Boston.
EV1 Esnault, H., Viehweg, E.: Lectures on Vanishing Theorems, DMV-Seminar 20 (1992), Birkhäuser, Basel-Boston-Berlin.
FL Ferrara, S., Louis, J.: Picard-Fuchs equations and flat holomorphic connections from $N=2$ supergravity. Essays on Mirror Manifolds, edited by Shing-Tung Yau, International Press (1992), 301–315.
vGI van Geemen, B., Izadi, E.: Half twists and the cohomology of hypersurfaces, Math. Z. 242 (2002), 279–301.
Iv1 Ivinskis, K.: A variational Torelli theorem for cyclic coverings of high degree, Comp. Math. 85 (1993), 201–228.
Laz Lazarsfeld, R.: Positivity in Algebraic Geometry. Part I. Ergebnisse der Math. 3. Folge. 48 (2004), Springer, Berlin-Heidelberg-New York. Part II. Ergebnisse der Math. 3. Folge. 49 (2004), Springer, Berlin-Heidelberg-New York.
LTYZ Liu, K-F., Todorov, A., Yau, S.-T., Zuo, K.: Shafarevich’s conjecture for CY manifolds, I. Preprint, 2002.
Mum1 Mumford, D.: Families of Abelian varieties, Proc. Sympos. Pure Math. 9 (1966), 347–351.
Mum2 Mumford, D.: A note of Shimura’s paper: “Discontinuous groups and Abelian varieties”, Math. Ann. 181 (1969), 345–351.
Shi Shioda, T.: Algebraic cycles on Abelian varieties of Fermat type, Math. Ann. 258 (1981/82), 65–80.
Sim1 Simpson, C.: Higgs bundles and local systems, Publ. Math. I.H.E.S 75 (1992), 5–95.
Sim2 Simpson, C.: Harmonic bundles on noncompact curves, Journal of the AMS 3 (1990), 713–770.
VZ3 Viehweg, E., Zuo K.: Base spaces of non-isotrivial families of smooth minimal models, in Complex Geometry (Collection of Papers dedicated to Hans Grauert), Springer Verlag (2002), 279–328.
VZ4 Viehweg, E., Zuo K.: Discreteness of minimal models of Kodaira dimension zero and subvarieties of moduli stacks, Surveys in differential geometry, Vol. VIII (Boston, MA, 2002), 337–356, Surv. Differ. Geom., VIII, Int. Press, Somerville, MA, 2003.
Voi Voisin, C.: Théorie de Hodge et Géométrie Algébrique Complex. Cours Spécialisés 10, SMF, 2002.
Additional Information
Eckart Viehweg
Affiliation:
Universität Essen, FB6 Mathematik, 45117 Essen, Germany
Email:
viehweg@uni-essen.de
Kang Zuo
Affiliation:
Universität Mainz, FB17 Mathematik, 55099 Mainz, Germany
MR Author ID:
269893
Email:
kzuo@mathematik.uni-mainz.de
Received by editor(s):
October 27, 2003
Published electronically:
February 16, 2005
Additional Notes:
This work has been supported by the Institute of Mathematical Science at the Chinese University of Hong Kong, by the “DFG-Schwerpunktprogramm Globale Methoden in der Komplexen Geometrie” and the “DFG-Leibnizprogramm”. The second-named author is supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CUHK 4034/02P) and from the Institute of Mathematical Sciences at the Chinese University of Hong Kong (Program in Algebraic Geometry)