Monodromy of projective curves
Authors:
Gian Pietro Pirola and Enrico Schlesinger
Journal:
J. Algebraic Geom. 14 (2005), 623-642
DOI:
https://doi.org/10.1090/S1056-3911-05-00408-X
Published electronically:
April 25, 2005
MathSciNet review:
2147355
Full-text PDF
Abstract | References | Additional Information
Abstract: The uniform position principle states that, given an irreducible non- degenerate curve $C \subset \mathbb {P}^r (\mathbb {C})$, a general $(r\!-\!2)$-plane $L \subset \mathbb {P}^r$ is uniform; that is, projection from $L$ induces a rational map $C \dashrightarrow \mathbb {P}^{1}$ whose monodromy group is the full symmetric group. In this paper we first show the locus of non-uniform $(r-2)$-planes has codimension at least two in the Grassmannian. This result is sharp because, if there is a point $x \in \mathbb {P}^r$ such that projection from $x$ induces a map $C \dashrightarrow \mathbb {P}^{r-1}$ that is not birational onto its image, then the Schubert cycle $\sigma (x)$ of $(r\!-\!2)$-planes through $x$ is contained in the locus of non-uniform $(r\!-\!2)$-planes. For a smooth curve $C$ in $\mathbb {P}^3$, we show that any irreducible surface of non-uniform lines is a cycle $\sigma (x)$ as above, unless $C$ is a rational curve of degree three, four, or six.
- E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR 770932
- Michela Artebani and Gian Pietro Pirola, Algebraic functions with even monodromy, Proc. Amer. Math. Soc. 133 (2005), no. 2, 331–341. MR 2093052, DOI https://doi.org/10.1090/S0002-9939-04-07713-5
- Wolf Barth and Ross Moore, On rational plane sextics with six tritangents, Algebraic geometry and commutative algebra, Vol. I, Kinokuniya, Tokyo, 1988, pp. 45–58. MR 977752
- Fernando Cukierman, Monodromy of projections, Mat. Contemp. 16 (1999), 9–30. 15th School of Algebra (Portuguese) (Canela, 1998). MR 1756825
- David Eisenbud, Linear sections of determinantal varieties, Amer. J. Math. 110 (1988), no. 3, 541–575. MR 944327, DOI https://doi.org/10.2307/2374622
- William Fulton and Robert Lazarsfeld, Connectivity and its applications in algebraic geometry, Algebraic geometry (Chicago, Ill., 1980) Lecture Notes in Math., vol. 862, Springer, Berlin-New York, 1981, pp. 26–92. MR 644817
- Robert Guralnick and Kay Magaard, On the minimal degree of a primitive permutation group, J. Algebra 207 (1998), no. 1, 127–145. MR 1643074, DOI https://doi.org/10.1006/jabr.1998.7451
- Joe Harris, Galois groups of enumerative problems, Duke Math. J. 46 (1979), no. 4, 685–724. MR 552521
- Joe Harris, Curves in projective space, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 85, Presses de l’Université de Montréal, Montreal, Que., 1982. With the collaboration of David Eisenbud. MR 685427
- Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
- Hajime Kaji, On the tangentially degenerate curves, J. London Math. Soc. (2) 33 (1986), no. 3, 430–440. MR 850959, DOI https://doi.org/10.1112/jlms/s2-33.3.430
- Kay Magaard and Helmut Völklein, The monodromy group of a function on a general curve, Israel J. Math. 141 (2004), 355–368. MR 2063042, DOI https://doi.org/10.1007/BF02772228
- Kei Miura, Field theory for function fields of plane quintic curves, Algebra Colloq. 9 (2002), no. 3, 303–312. MR 1917155
- Kei Miura and Hisao Yoshihara, Field theory for function fields of plane quartic curves, J. Algebra 226 (2000), no. 1, 283–294. MR 1749889, DOI https://doi.org/10.1006/jabr.1999.8173
- Madhav V. Nori, Zariski’s conjecture and related problems, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2, 305–344. MR 732347
- Gian Pietro Pirola, Algebraic curves and non-rigid minimal surfaces in the Euclidean space, Pacific J. Math. 183 (1998), no. 2, 333–357. MR 1625966, DOI https://doi.org/10.2140/pjm.1998.183.333
- Rosario Strano, Hyperplane sections of reducible curves, Zero-dimensional schemes and applications (Naples, 2000) Queen’s Papers in Pure and Appl. Math., vol. 123, Queen’s Univ., Kingston, ON, 2002, pp. 55–62. MR 1898825
- Claire Voisin, Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés [Specialized Courses], vol. 10, Société Mathématique de France, Paris, 2002 (French). MR 1988456
- Hisao Yoshihara, Function field theory of plane curves by dual curves, J. Algebra 239 (2001), no. 1, 340–355. MR 1827887, DOI https://doi.org/10.1006/jabr.2000.8675 Zariski1 O. Zariski, Sull’impossibilità di risolvere parametricamente per radicali un’equazione algebrica $f(x,y)=0$ di genere $p>6$ a moduli generali. Atti Accad. Naz. Lincei Rend., Cl. Sc. Fis. Mat. Natur., serie VI 3:660–666, 1926.
- Oscar Zariski, A theorem on the Poincaré group of an algebraic hypersurface, Ann. of Math. (2) 38 (1937), no. 1, 131–141. MR 1503330, DOI https://doi.org/10.2307/1968515
Additional Information
Gian Pietro Pirola
Affiliation:
Dipartimento di Matematica “F. Casorati”, Università di Pavia, via Ferrata 1, 27100 Pavia, Italia
MR Author ID:
139965
Email:
pirola@dimat.unipv.it
Enrico Schlesinger
Affiliation:
Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italia
Email:
enrsch@mate.polimi.it
Received by editor(s):
January 21, 2004
Received by editor(s) in revised form:
February 10, 2005
Published electronically:
April 25, 2005
Additional Notes:
The first author was partially supported by: 1) MIUR PRIN 2003: Spazi di moduli e teoria di Lie; 2) Gnsaga; 3) Far 2002 (PV): Varietà algebriche, calcolo algebrico, grafi orientati e topologici. The second author was partially supported by MIUR PRIN 2002 Geometria e classificazione delle varietà proiettive complesse.