Construction of rational surfaces of degree $12$ in projective fourspace
Authors:
Hirotachi Abo and Kristian Ranestad
Journal:
J. Algebraic Geom. 15 (2006), 323-338
DOI:
https://doi.org/10.1090/S1056-3911-06-00424-3
Published electronically:
January 11, 2006
MathSciNet review:
2199063
Full-text PDF
Abstract |
References |
Additional Information
Abstract: The aim of this paper is to present a construction of smooth rational surfaces in projective fourspace with degree $12$ and sectional genus $13$. In particular, we establish the existences of five different families of smooth rational surfaces in projective fourspace with the prescribed invariants.
abo H. Abo, Macaulay 2 scripts for finding rational surfaces in $\mathbb {P}^4$ with degree $12$. Available at http://www.math.colostate.edu/~abo/programs.html.
as H. Abo and F.-O. Schreyer, Exterior algebra methods for the construction of rational surfaces in $\mathbb {P}^4$, in preparation.
- I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, Algebraic vector bundles on ${\bf P}^{n}$ and problems of linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 66–67 (Russian). MR 509387
- Wolfram Decker, Lawrence Ein, and Frank-Olaf Schreyer, Construction of surfaces in ${\bf P}_4$, J. Algebraic Geom. 2 (1993), no. 2, 185–237. MR 1203684
- Wolfram Decker and David Eisenbud, Sheaf algorithms using the exterior algebra, Computations in algebraic geometry with Macaulay 2, Algorithms Comput. Math., vol. 8, Springer, Berlin, 2002, pp. 215–249. MR 1949553, DOI https://doi.org/10.1007/978-3-662-04851-1_9
- Wolfram Decker and Frank-Olaf Schreyer, Non-general type surfaces in ${\bf P}^4$: some remarks on bounds and constructions, J. Symbolic Comput. 29 (2000), no. 4-5, 545–582. Symbolic computation in algebra, analysis, and geometry (Berkeley, CA, 1998). MR 1769655, DOI https://doi.org/10.1006/jsco.1999.0323
- David Eisenbud, Gunnar Fløystad, and Frank-Olaf Schreyer, Sheaf cohomology and free resolutions over exterior algebras, Trans. Amer. Math. Soc. 355 (2003), no. 11, 4397–4426. MR 1990756, DOI https://doi.org/10.1090/S0002-9947-03-03291-4
- Geir Ellingsrud and Christian Peskine, Sur les surfaces lisses de ${\bf P}_4$, Invent. Math. 95 (1989), no. 1, 1–11 (French). MR 969410, DOI https://doi.org/10.1007/BF01394141
gs D. Grayson and M. Stillman, (1991) Macaulay 2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2.
- Andrew John Sommese and A. Van de Ven, On the adjunction mapping, Math. Ann. 278 (1987), no. 1-4, 593–603. MR 909240, DOI https://doi.org/10.1007/BF01458083
- Frank-Olaf Schreyer, Small fields in constructive algebraic geometry, Moduli of vector bundles (Sanda, 1994; Kyoto, 1994) Lecture Notes in Pure and Appl. Math., vol. 179, Dekker, New York, 1996, pp. 221–228. MR 1397991
abo H. Abo, Macaulay 2 scripts for finding rational surfaces in $\mathbb {P}^4$ with degree $12$. Available at http://www.math.colostate.edu/~abo/programs.html.
as H. Abo and F.-O. Schreyer, Exterior algebra methods for the construction of rational surfaces in $\mathbb {P}^4$, in preparation.
beilinson Beilinson, A. Coherent sheaves on $\mathbb P^N$ and problems of linear algebra, Funct. Anal. Appl. 12 (1978), 214–216.
des W. Decker, L. Ein and F.-O. Schreyer, Construction of surfaces in $\mathbb {P}^4$, J. Algebraic Geom. 2 (1993) 185–237.
de W. Decker and D. Eisenbud, Sheaf algorithms using the exterior algebra, In: D. Eisenbud, D.R. Grayson, M.E. Stillman, B. Sturmfels (Eds), Computations in Algebraic Geometry with Macaylay 2, Algorithms Comput. Math. 8 Springer, Berlin (2002) 215–249.
ds W. Decker and F. -O. Schreyer, Non-general type surface in $\mathbb {P}^4$: some remarks on bounds and constructions, J. Symbolic Comput., 25 (2000) 545–582.
efs D. Eisenbud, G. Fløystad and F.-O. Schreyer, Sheaf cohomology and free resolutions over exterior algebras, Trans. Amer. Math. Soc. 355 (2003) 4397–4426.
ep G. Ellingsrud and C. Peskine Sur les surfaces lisse de $\mathbb {P}^4$, Invent. Math. 95 (1989) 1–12.
gs D. Grayson and M. Stillman, (1991) Macaulay 2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2.
sv A. J. Sommese and A. Van de Ven, On the adjunction mapping, Math. Ann. 278 (1987) 593–603.
schreyer F.-O. Schreyer, Small fields in constructive algebraic geometry, Lecture Notes in Pure and Appl. Math., 179 (1996), 221–228.
Additional Information
Hirotachi Abo
Affiliation:
Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523
MR Author ID:
614361
Email:
abo@math.colostate.edu
Kristian Ranestad
Affiliation:
Matematisk Institutt, Universitetet i Oslo, P.b.1053 Blindern, N-0316 Oslo 3, Norway
Email:
ranestad@math.uio.no
Received by editor(s):
November 8, 2004
Received by editor(s) in revised form:
July 1, 2005, and July 6, 2005
Published electronically:
January 11, 2006