Degenerations of surface scrolls and the Gromov-Witten invariants of Grassmannians
Author:
Izzet Coskun
Journal:
J. Algebraic Geom. 15 (2006), 223-284
DOI:
https://doi.org/10.1090/S1056-3911-06-00426-7
Published electronically:
January 11, 2006
MathSciNet review:
2199064
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We describe an algorithm for computing certain characteristic numbers of rational normal surface scrolls using degenerations. As a corollary we obtain an efficient method for computing the corresponding Gromov-Witten invariants of the Grassmannians of lines.
- Arnaud Beauville, Complex algebraic surfaces, London Mathematical Society Lecture Note Series, vol. 68, Cambridge University Press, Cambridge, 1983. Translated from the French by R. Barlow, N. I. Shepherd-Barron and M. Reid. MR 732439
- Anders Skovsted Buch, Andrew Kresch, and Harry Tamvakis, Gromov-Witten invariants on Grassmannians, J. Amer. Math. Soc. 16 (2003), no. 4, 901–915. MR 1992829, DOI https://doi.org/10.1090/S0894-0347-03-00429-6
- Lucia Caporaso and Joe Harris, Counting plane curves of any genus, Invent. Math. 131 (1998), no. 2, 345–392. MR 1608583, DOI https://doi.org/10.1007/s002220050208
- Ionuţ Ciocan-Fontanine, On quantum cohomology rings of partial flag varieties, Duke Math. J. 98 (1999), no. 3, 485–524. MR 1695799, DOI https://doi.org/10.1215/S0012-7094-99-09815-0
[C1]coskun3:degenerations I. Coskun. Degenerations of Rational Normal Scrolls and the Gromov-Witten invariants of Grassmannians. in preparation.
[C2]coskun2:degenerations I. Coskun. The enumerative geometry of Del Pezzo surfaces via degenerations. to appear in Amer. J. Math.
- Robert Friedman, Algebraic surfaces and holomorphic vector bundles, Universitext, Springer-Verlag, New York, 1998. MR 1600388
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323
- W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 45–96. MR 1492534, DOI https://doi.org/10.1090/pspum/062.2/1492534
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley-Interscience [John Wiley & Sons], New York, 1978. Pure and Applied Mathematics. MR 507725
- Joe Harris, Algebraic geometry, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1995. A first course; Corrected reprint of the 1992 original. MR 1416564
- Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
- Steven L. Kleiman, The transversality of a general translate, Compositio Math. 28 (1974), 287–297. MR 360616
[Kl2]kleiman:schubert S. L. Kleiman. Problem 15: Rigorous foundation of Schubert’s enumerative calculus. In Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Northern Illinois Univ., De Kalb, Ill., 1974), pages 445–482. Proc. Sympos. Pure Math., Vol. XXVIII. Amer. Math. Soc., Providence, R. I., 1976.
[Kr]farsta A. Kresch. FARSTA, computer program. Available at http://www.maths.warwick. ac.uk/$\sim$kresch/co/farsta.html.
- Hermann Schubert, Kalkül der abzählenden Geometrie, Springer-Verlag, Berlin-New York, 1979 (German). Reprint of the 1879 original; With an introduction by Steven L. Kleiman. MR 555576
[Tam]tamvakis:doodle H. Tamvakis. Gromov-Witten invariants and the quantum cohomology of Grassmannians. arXiv:math.AG/0306415.
- I. Vainsencher and F. Xavier, A compactification of the space of twisted cubics, Math. Scand. 91 (2002), no. 2, 221–243. MR 1931571, DOI https://doi.org/10.7146/math.scand.a-14387
- Ravi Vakil, The characteristic numbers of quartic plane curves, Canad. J. Math. 51 (1999), no. 5, 1089–1120. MR 1718648, DOI https://doi.org/10.4153/CJM-1999-048-1
- Ravi Vakil, The enumerative geometry of rational and elliptic curves in projective space, J. Reine Angew. Math. 529 (2000), 101–153. MR 1799935, DOI https://doi.org/10.1515/crll.2000.094
[V3]vakil:thesis R. Vakil. The enumerative geometry of rational and elliptic curves in projective space. Thesis Harvard University, alg-geom/9709007.
[Bv]beauville:surface A. Beauville. Complex algebraic surfaces, volume 68 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1983.
[BKT]buch:doodle A. S. Buch, A. Kresch, and H. Tamvakis. Gromov-Witten invariants on Grassmannians. J. Amer. Math. Soc. 16 (2003), 901–915.
[CH]Capharris:severi L. Caporaso and J. Harris. Counting plane curves of any genus. Invent. Math. 131 no.2 (1998), 345–392.
[Ci]ciocan:flag I. Ciocan-Fontanine. On quantum cohomology rings of partial flag varieties. Duke Math. J. 98 (1999), 485–524.
[C1]coskun3:degenerations I. Coskun. Degenerations of Rational Normal Scrolls and the Gromov-Witten invariants of Grassmannians. in preparation.
[C2]coskun2:degenerations I. Coskun. The enumerative geometry of Del Pezzo surfaces via degenerations. to appear in Amer. J. Math.
[Fr]friedman:surfaces R. Friedman. Algebraic surfaces and holomorphic vector bundles. Universitext. Springer-Verlag, New York, 1998.
[Ful]fulton:intersection W. Fulton. Intersection theory, volume 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Springer-Verlag, Berlin, second edition, 1998.
[FP]fultonpan:kontsevich W. Fulton and R. Pandharipande. Notes on stable maps and quantum cohomology. In Algebraic geometry—Santa Cruz 1995, volume 62 Part 2 of Proc. Sympos. Pure Math., pages 45–96. Amer. Math. Soc., 1997.
[GH]joe:thebook P. Griffiths and J. Harris. Principles of Algebraic Geometry. Wiley Interscience, 1978.
[H]joe:first J. Harris. Algebraic geometry, volume 133 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995.
[Ha]hartshorne:book R. Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52.
[Kl1]kleiman:transverse S. L. Kleiman. The transversality of a general translate. Compositio Math. 28 (1974), 287–297.
[Kl2]kleiman:schubert S. L. Kleiman. Problem 15: Rigorous foundation of Schubert’s enumerative calculus. In Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Northern Illinois Univ., De Kalb, Ill., 1974), pages 445–482. Proc. Sympos. Pure Math., Vol. XXVIII. Amer. Math. Soc., Providence, R. I., 1976.
[Kr]farsta A. Kresch. FARSTA, computer program. Available at http://www.maths.warwick. ac.uk/$\sim$kresch/co/farsta.html.
[Sc]schubert:enumerative H. Schubert. Kalkül der abzählenden Geometrie. Springer-Verlag, Berlin, 1979. Reprint of the 1879 original, with an introduction by Steven L. Kleiman.
[Tam]tamvakis:doodle H. Tamvakis. Gromov-Witten invariants and the quantum cohomology of Grassmannians. arXiv:math.AG/0306415.
[VX]vainsencher:cubic I. Vainsencher and F. Xavier. A compactification of the space of twisted cubics. Math. Scand. 91 (2002), 221–243.
[V1]vakil:quartic R. Vakil. The characteristic numbers of quartic plane curves. Canad. J. Math. 51 (1999), 1089–1120.
[V2]vakil:rationalelliptic R. Vakil. The enumerative geometry of rational and elliptic curves in projective space. J. Reine Angew. Math. 529 (2000), 101–153.
[V3]vakil:thesis R. Vakil. The enumerative geometry of rational and elliptic curves in projective space. Thesis Harvard University, alg-geom/9709007.
Additional Information
Izzet Coskun
Affiliation:
Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
Address at time of publication:
Department of Mathematics, M.I.T., Cambridge, Massachusetts 02139
MR Author ID:
736580
Email:
coskun@math.harvard.edu, coskun@math.mit.edu
Received by editor(s):
February 23, 2004
Received by editor(s) in revised form:
September 19, 2004, February 26, 2005, and August 22, 2005
Published electronically:
January 11, 2006