Numerical bounds for semi-stable families of curves or of certain higher-dimensional manifolds
Authors:
Eckart Viehweg and Kang Zuo
Journal:
J. Algebraic Geom. 15 (2006), 771-791
DOI:
https://doi.org/10.1090/S1056-3911-05-00423-6
Published electronically:
November 30, 2005
MathSciNet review:
2237270
Full-text PDF
Abstract |
References |
Additional Information
Abstract: Given an open subset $U$ of a projective curve $Y$ and a smooth family $f:V\to U$ of curves, with semi-stable reduction over $Y$, we show that for a subvariation $\mathbb {V}$ of Hodge structures of $R^1f_*\mathbb {C}_V$ with $\textrm {rank} (\mathbb {V})>2$ the Arakelov inequality must be strict. For families of $n$-folds we prove a similar result under the assumption that the $(n,0)$ component of the Higgs bundle of $\mathbb {V}$ defines a birational map.
[Beauville 81]Bea1 Beauville, A.: Le nombre minimum de fibres singulierès d’une courbe stable sur $P^ 1.$ (French) Asterisque 86 (1981) 97–108.
- P. Deligne, Un théorème de finitude pour la monodromie, Discrete groups in geometry and analysis (New Haven, Conn., 1984) Progr. Math., vol. 67, Birkhäuser Boston, Boston, MA, 1987, pp. 1–19 (French). MR 900821, DOI https://doi.org/10.1007/978-1-4899-6664-3_1
- Hélène Esnault and Eckart Viehweg, Lectures on vanishing theorems, DMV Seminar, vol. 20, Birkhäuser Verlag, Basel, 1992. MR 1193913
- János Kollár, Subadditivity of the Kodaira dimension: fibers of general type, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 361–398. MR 946244, DOI https://doi.org/10.2969/aspm/01010361
- Curtis T. McMullen, Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer. Math. Soc. 16 (2003), no. 4, 857–885. MR 1992827, DOI https://doi.org/10.1090/S0894-0347-03-00432-6
[Möller 04]Moe Möller, M.: Variations of Hodge structures of Teichmüller curves.
[Möller 05]Moe2 Möller, M.: Shimura and Teichmüller curves.
- David Mumford, Families of abelian varieties, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 347–351. MR 0206003
- Nguyen Khac Viet, A complete proof of Beauville’s conjecture, Tạp chí Toán Học J. Math. 22 (1994), no. 3-4, 114–116. MR 1368119
- Sheng Li Tan, The minimal number of singular fibers of a semistable curve over ${\bf P}^1$, J. Algebraic Geom. 4 (1995), no. 3, 591–596. MR 1325793
- Carlos T. Simpson, Harmonic bundles on noncompact curves, J. Amer. Math. Soc. 3 (1990), no. 3, 713–770. MR 1040197, DOI https://doi.org/10.1090/S0894-0347-1990-1040197-8
- Eckart Viehweg, Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces, Algebraic varieties and analytic varieties (Tokyo, 1981) Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam, 1983, pp. 329–353. MR 715656, DOI https://doi.org/10.2969/aspm/00110329
- Eckart Viehweg, Quasi-projective moduli for polarized manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 30, Springer-Verlag, Berlin, 1995. MR 1368632
- Eckart Viehweg and Kang Zuo, On the isotriviality of families of projective manifolds over curves, J. Algebraic Geom. 10 (2001), no. 4, 781–799. MR 1838979
- Eckart Viehweg and Kang Zuo, Families over curves with a strictly maximal Higgs field, Asian J. Math. 7 (2003), no. 4, 575–598. MR 2074892, DOI https://doi.org/10.4310/AJM.2003.v7.n4.a8
- Eckart Viehweg and Kang Zuo, A characterization of certain Shimura curves in the moduli stack of abelian varieties, J. Differential Geom. 66 (2004), no. 2, 233–287. MR 2106125
[Beauville 81]Bea1 Beauville, A.: Le nombre minimum de fibres singulierès d’une courbe stable sur $P^ 1.$ (French) Asterisque 86 (1981) 97–108.
[Deligne 87]Del Deligne, P.: Un théorème de finitude pour la monodromie. Discrete Groups in Geometry and Analysis, Birkhäuser, Progress in Math. 67 (1987) 1–19.
[E-V 92]EV Esnault, H., Viehweg, E.: Lectures on Vanishing Theorems. DMV-Seminar 20 (1992), Birkhäuser, Basel-Boston-Berlin.
[Kollár 87]Kol Kollár, J.: Subadditivity of the Kodaira Dimension: Fibres of general type. Algebraic Geometry, Sendai, 1985. Advanced Studies in Pure Mathematics 10 (1987) 361–398.
[McMullen 03]McM1 McMullen, C.: Billiards and Teichmüller curves on Hilbert modular surfaces. Journal of the AMS 16 (2003) 857–885.
[Möller 04]Moe Möller, M.: Variations of Hodge structures of Teichmüller curves.
[Möller 05]Moe2 Möller, M.: Shimura and Teichmüller curves.
[Mumford 66]Mum Mumford, D.: Families of abelian varieties. Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, R.I. 9 (1966) 347–351.
[Nguyen 95]Ngu Nguyen, K. V.: On Beauville’s conjecture and related topics. J. Math. Kyoto Univ. 35 (1995) 275–298.
[Tan 95]Tan Tan, S-L.: The minimal number of singular fibers of a semistable curve over $P^ 1$. J. Algebraic. Geom. 4 (1995) 591–596.
[Simpson 90]Sim Simpson, C.: Harmonic bundles on noncompact curves. Journal of the AMS 3 (1990) 713–770.
[V 81]Vie0 Viehweg, E.: Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces. Proc. Algebraic Varieties and Analytic Varieties, Tokyo 1981. Adv. Studies in Math. 1, Kinokunya–North-Holland Publ. 1983, 329–353.
[V 95]Vie Viehweg, E.: Quasi-projective Moduli for Polarized Manifolds. Ergebnisse der Mathematik, 3. Folge 30 (1995), Springer Verlag, Berlin-Heidelberg-New York.
[V-Z 01]VZ1 Viehweg, E., Zuo, K.: On the isotriviality of families of projective manifolds over curves. J. Algebraic Geom. 10 (2001) 781–799.
[V-Z 03]VZ3 Viehweg, E., Zuo, K.: Families over curves with a strictly maximal Higgs field. Asian J. of Math. 7 (2003) 575–598.
[V-Z 04]VZ2 Viehweg, E., Zuo, K.: A characterization of certain Shimura curves in the moduli stack of abelian varieties. J. Diff. Geom. 66 (2004) 233–287.
Additional Information
Eckart Viehweg
Affiliation:
Universität Duisburg-Essen, Mathematik, 45117 Essen, Germany
Email:
viehweg@uni-essen.de
Kang Zuo
Affiliation:
Universität Mainz, Fachbereich 17, Mathematik, 55099 Mainz, Germany
MR Author ID:
269893
Email:
kzuo@mathematik.uni-mainz.de
Received by editor(s):
April 26, 2005
Received by editor(s) in revised form:
June 21, 2005
Published electronically:
November 30, 2005
Additional Notes:
This work has been supported by the “DFG-Schwerpunktprogramm Globale Methoden in der Komplexen Geometrie”, and by the DFG-Leibniz program