The Betti numbers of $\overline {\mathcal {M}}_{0,n}(r,d)$
Authors:
Ezra Getzler and Rahul Pandharipande
Journal:
J. Algebraic Geom. 15 (2006), 709-732
DOI:
https://doi.org/10.1090/S1056-3911-06-00425-5
Published electronically:
May 2, 2006
MathSciNet review:
2237267
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We calculate the Betti numbers of the coarse moduli space of stable maps of genus 0 to projective space, using a generalization of the Legendre transform.
- K. Behrend and Yu. Manin, Stacks of stable maps and Gromov-Witten invariants, Duke Math. J. 85 (1996), no. 1, 1–60. MR 1412436, DOI https://doi.org/10.1215/S0012-7094-96-08501-4
- K. Behrend and A. O’Halloran, On the cohomology of stable map spaces, Invent. Math. 154 (2003), no. 2, 385–450. MR 2013785, DOI https://doi.org/10.1007/s00222-003-0308-5
cox J. Cox, An additive basis for the Chow ring of ${\overline {\mathcal {M}}} _{0,n}({\mathbb {P}}^r,2)$. math.AG/0501322
DK V.I. Danilov and A.G. Khovanskiĭ, Newton polyhedra and an algorithm for computing Hodge-Deligne numbers. Math. USSR Izvestiya, 29 (1987), 279–298.
- Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5–57 (French). MR 498551
- William Fulton and Robert MacPherson, A compactification of configuration spaces, Ann. of Math. (2) 139 (1994), no. 1, 183–225. MR 1259368, DOI https://doi.org/10.2307/2946631
- W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 45–96. MR 1492534, DOI https://doi.org/10.1090/pspum/062.2/1492534
- E. Getzler, Operads and moduli spaces of genus $0$ Riemann surfaces, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 199–230. MR 1363058, DOI https://doi.org/10.1007/978-1-4612-4264-2_8
I E. Getzler, Mixed Hodge structures of configuration spaces. Max-Planck-Institut preprint MPI-96-61. alg-geom/9510018
- E. Getzler and M. M. Kapranov, Modular operads, Compositio Math. 110 (1998), no. 1, 65–126. MR 1601666, DOI https://doi.org/10.1023/A%3A1000245600345
- B. Kim and R. Pandharipande, The connectedness of the moduli space of maps to homogeneous spaces, Symplectic geometry and mirror symmetry (Seoul, 2000) World Sci. Publ., River Edge, NJ, 2001, pp. 187–201. MR 1882330, DOI https://doi.org/10.1142/9789812799821_0006
- Maxim Kontsevich, Enumeration of rational curves via torus actions, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 335–368. MR 1363062, DOI https://doi.org/10.1007/978-1-4612-4264-2_12
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- I. M. Šul′gina, The relative motion of nonholonomic mechanical systems of variable mass, Taškent. Gos. Univ. Naučn. Trudy 316 Voprosy Meh. i Mat. (1968), 127–144 (Russian). MR 0363064
- Yuri I. Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, American Mathematical Society Colloquium Publications, vol. 47, American Mathematical Society, Providence, RI, 1999. MR 1702284
mus A. Mustata and M. Mustata, Intermediate moduli spaces of stable maps. math.AG/0409569
dr1 D. Oprea, The tautological rings of the moduli spaces of stable maps. math.AG/0404280
dr2 D. Oprea, Tautological classes on the moduli spaces of stable maps to projective spaces. math.AG/0404284
- Rahul Pandharipande, The Chow ring of the nonlinear Grassmannian, J. Algebraic Geom. 7 (1998), no. 1, 123–140. MR 1620694
- Rahul Pandharipande, Intersections of $\mathbf Q$-divisors on Kontsevich’s moduli space $\overline M_{0,n}(\mathbf P^r,d)$ and enumerative geometry, Trans. Amer. Math. Soc. 351 (1999), no. 4, 1481–1505. MR 1407707, DOI https://doi.org/10.1090/S0002-9947-99-01909-1
BM K. Behrend and Yu. Manin, Stacks of stable maps and Gromov-Witten invariants. Duke Math. J. 85 (1996), 1–60.
bo K. Behrend and A. O’Halloran, On the cohomology of stable map spaces, Invent. Math. 154 (2003), 385–450.
cox J. Cox, An additive basis for the Chow ring of ${\overline {\mathcal {M}}} _{0,n}({\mathbb {P}}^r,2)$. math.AG/0501322
DK V.I. Danilov and A.G. Khovanskiĭ, Newton polyhedra and an algorithm for computing Hodge-Deligne numbers. Math. USSR Izvestiya, 29 (1987), 279–298.
Deligne P. Deligne, Théorie de Hodge. II. Publ. Math. IHES 40 (1971), 5–58.
FM W. Fulton and R. MacPherson, A compactification of configuration spaces. Ann. Math., 139 (1994), 183–225.
rahul W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology. In “Algebraic geometry—Santa Cruz 1995,” Proc. Sympos. Pure Math., 62, Part 2, Amer. Math. Soc., Providence, RI, 1997, pp. 45–96.
gravity E. Getzler, Operads and moduli spaces of genus $0$ Riemann surfaces. In “The moduli space of curves,” Progr. Math. 129, Birkhäuser Boston, Boston, MA, 1995.
I E. Getzler, Mixed Hodge structures of configuration spaces. Max-Planck-Institut preprint MPI-96-61. alg-geom/9510018
modular E. Getzler and M. Kapranov, Modular operads. Compositio Math. 110 (1998), 65–126.
bp B. Kim and R. Pandharipande, The connectedness of the moduli space of maps to homogeneous spaces. In “Symplectic geometry and mirror symmetry (Seoul, 2000),” 187–201, World Sci. Publishing, River Edge, NJ, 2001.
kont M. Kontsevich, Enumeration of rational curves via torus actions, in “The moduli space of curves (Texel Island, 1994),” 335–368, Progr. Math. 129, Birkhäuser Boston, Boston, MA, 1995.
Macdonald I. G. Macdonald, “Symmetric Functions and Hall Polynomials.” Clarendon Press, Oxford, 1995.
Manin:Texel Yu. I. Manin, Generating functions in algebraic geometry and sums over trees, in “The moduli space of curves (Texel Island, 1994),” 401–417, Progr. Math. 129, Birkhäuser Boston, Boston, MA, 1995.
manin Yu. Manin, “Frobenius manifolds, quantum cohomology, and moduli spaces,” American Mathematical Society Colloquium Publications, 47. American Mathematical Society, Providence, RI, 1999.
mus A. Mustata and M. Mustata, Intermediate moduli spaces of stable maps. math.AG/0409569
dr1 D. Oprea, The tautological rings of the moduli spaces of stable maps. math.AG/0404280
dr2 D. Oprea, Tautological classes on the moduli spaces of stable maps to projective spaces. math.AG/0404284
rahul:chow R. Pandharipande, The Chow ring of the non-linear Grassmannian. J. Algebraic Geom. 7 (1998), 123–140.
rint R. Pandharipande, Intersections of ${\mathbb {Q}}$-divisors on Kontsevich’s moduli space ${\overline {\mathcal {M}}} _{0,n}({\mathbb {P}}^r,d)$ and enumerative geometry. Trans. Amer. Math. Soc. 351 (1999), 1481–1505.
Additional Information
Ezra Getzler
Affiliation:
Department of Mathematics, Northwestern University, Evanston, Illinois 60208-2730
MR Author ID:
210138
ORCID:
0000-0002-5850-7723
Email:
getzler@northwestern.edu
Rahul Pandharipande
Affiliation:
Department of Mathematics, Princeton University, Princeton, New Jersey 08544-1000
MR Author ID:
357813
Email:
rahulp@math.princeton.edu
Received by editor(s):
February 26, 2005
Published electronically:
May 2, 2006