Groupe de Picard et groupe de Brauer des compactifications lisses d’espaces homogènes
Authors:
Jean-Louis Colliot-Thélène and Boris È. Kunyavskiĭ
Journal:
J. Algebraic Geom. 15 (2006), 733-752
DOI:
https://doi.org/10.1090/S1056-3911-06-00427-9
Published electronically:
June 12, 2006
MathSciNet review:
2237268
Full-text PDF
Abstract |
References |
Additional Information
Abstract: Let $k$ be a field of characteristic zero, $G$ a connected linear algebraic group over $k$ and $H$ a connected closed $k$-subgroup of $G$. Let $X$ be a smooth $k$-compactification of $Y=G/H$. We prove that the Galois lattice given by the geometric Picard group of $X$ is flasque. The result was known in the case $H=1$. We compute this Galois lattice up to addition of a permutation module. When $G$ is semisimple and simply connected, the result shows that the Brauer group of $X$ is determined by the maximal toric quotient of $H$.
- F. A. Bogomolov, Brauer groups of the fields of invariants of algebraic groups, Mat. Sb. 180 (1989), no. 2, 279–293 (Russian); English transl., Math. USSR-Sb. 66 (1990), no. 1, 285–299. MR 993459, DOI https://doi.org/10.1070/SM1990v066n01ABEH001173
- Mikhail V. Borovoi, Abelianization of the second nonabelian Galois cohomology, Duke Math. J. 72 (1993), no. 1, 217–239. MR 1242885, DOI https://doi.org/10.1215/S0012-7094-93-07209-2
- Mikhail Borovoi, The Brauer-Manin obstructions for homogeneous spaces with connected or abelian stabilizer, J. Reine Angew. Math. 473 (1996), 181–194. MR 1390687, DOI https://doi.org/10.1515/crll.1995.473.181
- Mikhail Borovoi and Boris Kunyavskiĭ, Formulas for the unramified Brauer group of a principal homogeneous space of a linear algebraic group, J. Algebra 225 (2000), no. 2, 804–821. MR 1741563, DOI https://doi.org/10.1006/jabr.1999.8153
- Mikhail Borovoi, Boris Kunyavskiĭ, and Philippe Gille, Arithmetical birational invariants of linear algebraic groups over two-dimensional geometric fields, J. Algebra 276 (2004), no. 1, 292–339. MR 2054399, DOI https://doi.org/10.1016/j.jalgebra.2003.10.024
- Jean-Louis Colliot-Thélène, Résolutions flasques des groupes réductifs connexes, C. R. Math. Acad. Sci. Paris 339 (2004), no. 5, 331–334 (French, with English and French summaries). MR 2092058, DOI https://doi.org/10.1016/j.crma.2004.06.012
- J.-L. Colliot-Thélène, P. Gille, and R. Parimala, Arithmetic of linear algebraic groups over 2-dimensional geometric fields, Duke Math. J. 121 (2004), no. 2, 285–341. MR 2034644, DOI https://doi.org/10.1215/S0012-7094-04-12124-4
- J.-L. Colliot-Thélène and B. È. Kunyavskiĭ, Groupe de Brauer non ramifié des espaces principaux homogènes de groupes linéaires, J. Ramanujan Math. Soc. 13 (1998), no. 1, 37–49 (French, with English summary). MR 1626696
- Jean-Louis Colliot-Thélène and Jean-Jacques Sansuc, La $R$-équivalence sur les tores, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 2, 175–229 (French). MR 450280
- Jean-Louis Colliot-Thélène and Jean-Jacques Sansuc, La descente sur les variétés rationnelles. II, Duke Math. J. 54 (1987), no. 2, 375–492 (French). MR 899402, DOI https://doi.org/10.1215/S0012-7094-87-05420-2
- Jean-Louis Colliot-Thélène and Jean-Jacques Sansuc, Principal homogeneous spaces under flasque tori: applications, J. Algebra 106 (1987), no. 1, 148–205. MR 878473, DOI https://doi.org/10.1016/0021-8693%2887%2990026-3
[CT/San4]CTSan4 J.-L. Colliot-Thélène et J.-J. Sansuc, The rationality problem for fields of invariants under linear algebraic groups (with special regards to the Brauer group), in Proceedings of the Mumbai 2004 International Conference, à paraître.
- Antoine Ducros, Dimension cohomologique et points rationnels sur les courbes, J. Algebra 203 (1998), no. 2, 349–354 (French). MR 1622783, DOI https://doi.org/10.1006/jabr.1997.7330
- Philippe Gille, Cohomologie galoisienne des groupes quasi-déployés sur des corps de dimension cohomologique $\leq 2$, Compositio Math. 125 (2001), no. 3, 283–325 (French, with English summary). MR 1818983, DOI https://doi.org/10.1023/A%3A1002473132282
- Alexander Grothendieck, Le groupe de Brauer. I. Algèbres d’Azumaya et interprétations diverses, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., vol. 3, North-Holland, Amsterdam, 1968, pp. 46–66 (French). MR 244269
- János Kollár, Specialization of zero cycles, Publ. Res. Inst. Math. Sci. 40 (2004), no. 3, 689–708. MR 2074697
- J.-J. Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. Reine Angew. Math. 327 (1981), 12–80 (French). MR 631309, DOI https://doi.org/10.1515/crll.1981.327.12
- Jean-Pierre Serre, Corps locaux, Hermann, Paris, 1968 (French). Deuxième édition; Publications de l’Université de Nancago, No. VIII. MR 0354618
- V. E. Voskresenskiĭ, Algebraicheskie tory, Izdat. “Nauka”, Moscow, 1977 (Russian). MR 0506279
- V. E. Voskresenskiĭ, The birational invariants of algebraic tori, Uspehi Mat. Nauk 30 (1975), no. 2(182), 207–208 (Russian). MR 0485902
- V. E. Voskresenskiĭ, Algebraic groups and their birational invariants, Translations of Mathematical Monographs, vol. 179, American Mathematical Society, Providence, RI, 1998. Translated from the Russian manuscript by Boris Kunyavski [Boris È. Kunyavskiĭ]. MR 1634406
[Bog]Bog F. A. Bogomolov, Groupe de Brauer des corps d’invariants de groupes algébriques (en russe), Mat. Sb. 180 (1989), 279–293 ; trad. ang. Math. USSR-Sb. 66 (1990), 285–299.
[Bo1]Bo1 M. Borovoi, Abelianization of the second nonabelian Galois cohomology, Duke Math. J. 72 (1993), 217–239.
[Bo2]Bo2 M. Borovoi, The Brauer–Manin obstructions for homogeneous spaces with connected or abelian stabilizer, J. reine angew. Math. (Crelle) 473 (1996), 181–194.
[B/K1]BK1 M. Borovoi et B. Kunyavskiĭ, Formulas for the unramified Brauer group of a principal homogeneous space of a linear algebraic group, J. Algebra 225 (2000), 804–821.
[B/K2]BK2 M. Borovoi et B. Kunyavskiĭ, Arithmetical birational invariants of linear algebraic groups over two-dimensional geometric fields (with an appendix by P. Gille), J. Al- gebra 276 (2004), 292–339.
[CT]CT J.-L. Colliot-Thélène, Résolutions flasques des groupes réductifs connexes, C. R. Acad. Sc. Paris Sér. I 339 (2004), 331–334.
[CT/Gi/Pa]CTGiPa J.-L. Colliot-Thélène, P. Gille et R. Parimala, Arithmetic of linear algebraic groups over 2-dimensional geometric fields, Duke Math. J. 121 (2004), 285–341.
[CT/K]CTK J.-L. Colliot-Thélène et B. Kunyavskiĭ, Groupe de Brauer non ramifié des espaces principaux homogènes des groupes linéaires, J. Ramanujan Math. Soc. 13 (1998), 37–49.
[CT/San1]CTSan1 J.-L. Colliot-Thélène et J.-J. Sansuc, La $R$-équivalence sur les tores, Ann. Sci. E.N.S. 10 (1977), 175–229.
[CT/San2]CTSan2 J.-L. Colliot-Thélène et J.-J. Sansuc, La descente sur les variétés rationnelles, II, Duke Math. J. 54 (1987), 375–492.
[CT/San3]CTSan3 J.-L. Colliot-Thélène et J.-J. Sansuc, Principal homogeneous spaces under flasque tori: applications, J. Algebra 106 (1987), 148–205.
[CT/San4]CTSan4 J.-L. Colliot-Thélène et J.-J. Sansuc, The rationality problem for fields of invariants under linear algebraic groups (with special regards to the Brauer group), in Proceedings of the Mumbai 2004 International Conference, à paraître.
[D]D A. Ducros, Dimension cohomologique et points rationnels sur les courbes, J. Algebra 203 (1998), 349–354.
[G]G P. Gille, Cohomologie galoisienne des groupes quasidéployés sur des corps de dimension $\leq 2$, Compositio Math. 125 (2001), 283–325.
[Gr]Gr A. Grothendieck, Le groupe de Brauer, I, II, III, in Dix Exposés sur la Cohomologie des Schémas, North-Holland, Amsterdam, 1968, pp. 46–188. ; ;
[K]K J. Kollár, Specialization of zero cycles, Publ. Res. Inst. Math. Sci. 40 (2004), 689–708.
[San]San J.-J. Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. reine angew. Math. (Crelle) 327 (1981), 12–80.
[S]S J-P. Serre, Corps locaux, deuxième édition, Hermann, Paris, 1968.
[Vos1]Vos1 V. E. Voskresenskiĭ, Invariants birationnels des tores algébriques (en russe), Uspehi Mat. Nauk 30 (1975), no. 2 (182), 207–208.
[Vos2]Vos2 V. E. Voskresenskiĭ, Algebraicheskie tory (Tores algébriques), Nauka, Moscow, 1977.
[Vos3]Vos3 V. E. Voskresenskiĭ, Algebraic groups and their birational invariants, Transl. Math. Monographs 179, Amer. Math. Soc., Providence, R.I., 1998.
Additional Information
Jean-Louis Colliot-Thélène
Affiliation:
C.N.R.S., UMR 8628, Mathématiques, Bâtiment 425, Université de Paris-Sud, F-91405 Orsay, France
MR Author ID:
50705
Email:
colliot@math.u-psud.fr
Boris È. Kunyavskiĭ
Affiliation:
Bar-Ilan University, Department of Mathematics, 52900 Ramat Gan, Israel
Email:
kunyav@macs.biu.ac.il
Received by editor(s):
March 26, 2005
Received by editor(s) in revised form:
April 21, 2005, and June 23, 2005
Published electronically:
June 12, 2006