La singularité de O’Grady
Authors:
Manfred Lehn and Christoph Sorger
Journal:
J. Algebraic Geom. 15 (2006), 753-770
DOI:
https://doi.org/10.1090/S1056-3911-06-00437-1
Published electronically:
May 24, 2006
MathSciNet review:
2237269
Full-text PDF
Abstract |
References |
Additional Information
Abstract:
Let $M_{2v}$ be the moduli space of semistable sheaves with Mukai vector $2v$ on an abelian or $K3$ surface where $v$ is primitive such that $\langle v,v \rangle =2$. We show that the blow-up of the reduced singular locus of $M_{2v}$ provides a symplectic resolution of singularities. This provides a direct description of O’Grady’s resolutions of $M_{K3}(2,0,4)$ and $M_{Ab}(2,0,2)$.
Résumé. Soit $M_{2v}$ l’espace de modules des faisceaux semi-stables de vecteur de Mukai $2v$ sur une surface $K3$ ou abélienne où $v$ est primitif tel que $\langle v,v \rangle =2$. Nous montrons que l’éclatement de $M_{2v}$ le long de son lieu singulier réduit fournit une résolution symplectique des singularités. Ceci donne une description directe des résolutions de O’Grady de $M_{K3}(2,0,4)$ et $M_{Ab}(2,0,2)$.
- I. V. Artamkin, Deformation of torsion-free sheaves on an algebraic surface, Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), no. 3, 435–468 (Russian); English transl., Math. USSR-Izv. 36 (1991), no. 3, 449–485. MR 1072690, DOI https://doi.org/10.1070/IM1991v036n03ABEH002030
- I. V. Artamkin, On the deformation of sheaves, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 3, 660–665, 672 (Russian); English transl., Math. USSR-Izv. 32 (1989), no. 3, 663–668. MR 954302, DOI https://doi.org/10.1070/IM1989v032n03ABEH000805
- M. Artin, On the solutions of analytic equations, Invent. Math. 5 (1968), 277–291. MR 232018, DOI https://doi.org/10.1007/BF01389777
- Arnaud Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983), no. 4, 755–782 (1984) (French). MR 730926
- David H. Collingwood and William M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR 1251060
Greuel G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 2.0. A Computer Algebra System for Polynomial Computations. Centre for Computer Algebra, University of Kaiserslautern (2001). http://www.singular.uni-kl.de
- Phillip A. Griffiths, Hermitian differential geometry, Chern classes, and positive vector bundles, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 185–251. MR 0258070
- Baohua Fu, Symplectic resolutions for nilpotent orbits, Invent. Math. 151 (2003), no. 1, 167–186. MR 1943745, DOI https://doi.org/10.1007/s00222-002-0260-9
- Mark Haiman, $t,q$-Catalan numbers and the Hilbert scheme, Discrete Math. 193 (1998), no. 1-3, 201–224. Selected papers in honor of Adriano Garsia (Taormina, 1994). MR 1661369, DOI https://doi.org/10.1016/S0012-365X%2898%2900141-1
- Mark Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc. 14 (2001), no. 4, 941–1006. MR 1839919, DOI https://doi.org/10.1090/S0894-0347-01-00373-3
- Daniel Huybrechts and Manfred Lehn, The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, Braunschweig, 1997. MR 1450870
KLS D. Kaledin, M. Lehn, Ch. Sorger, Singular Symplectic Moduli Spaces. À paraître dans Invent. Math.
Kleiman S. Kleiman, Les théorèmes de finititude pour le foncteur de Picard, SGA 6, Exp. 13, Springer Lecture Notes 225, 1971.
- Kieran G. O’Grady, Desingularized moduli spaces of sheaves on a $K3$, J. Reine Angew. Math. 512 (1999), 49–117. MR 1703077, DOI https://doi.org/10.1515/crll.1999.056
- Kieran G. O’Grady, A new six-dimensional irreducible symplectic variety, J. Algebraic Geom. 12 (2003), no. 3, 435–505. MR 1966024, DOI https://doi.org/10.1090/S1056-3911-03-00323-0
Rapagnetta A. Rapagnetta, Topological invariants of O’Grady’s six dimensional irreducible symplectic variety. math.AG/0406026.
Weyl H. Weyl, The Classical Groups, Princeton Math. Series 1, Princeton 1946.
- K\B{o}ta Yoshioka, Moduli spaces of stable sheaves on abelian surfaces, Math. Ann. 321 (2001), no. 4, 817–884. MR 1872531, DOI https://doi.org/10.1007/s002080100255
Yoshioka2 K. Yoshioka, A note on Fourier-Mukai transform, math.AG/0112267.
Artamkin I. V. Artamkin, Deformation of torsion-free sheaves on an algebraic surface. (En russe) Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), 435–468; (traduction anglaise) Math. USSR-Izv. 36 (1991), 449–485.
Artamkin2 I. V. Artamkin, On the deformation of sheaves. (En russe) Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), 660–665, 672; (traduction anglaise) Math. USSR-Izv. 32 (1989), 663–668.
Artin M. Artin, On the solutions of Analytic Equations. Invent. math. 5 (1968), 277–291.
B A. Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle. J. Differential Geom. 18 (1983), 755–782.
Coll D. H. Collingwood, W. M. McGovern, Nilpotent orbits in semisimple Lie algebras. Van Nostrand Reinhold Co., New York, 1993. xiv+186 pp.
Greuel G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 2.0. A Computer Algebra System for Polynomial Computations. Centre for Computer Algebra, University of Kaiserslautern (2001). http://www.singular.uni-kl.de
Griffiths P. Griffiths, Hermitian differential geometry, Chern classes, and positive vector bundles. in: Global Analysis, papers in honor of K. Kodaira, pp. 185–251, Princeton University Press 1969.
Fu B. Fu, Symplectic resolutions for nilpotent orbits. Invent. Math. 151 (2003), 167–186.
H1 M. Haiman, t,q-Catalan numbers and the Hilbert scheme, Discrete Math. 193 (1998), no. 1-3, 201–224, Selected papers in honor of Adriano Garsia (Taormina, 1994).
H2 M. Haiman, Hilbert schemes, polygraphs, and the Macdonald positivity conjecture, J. Amer. Math. Soc. 14 (2001), 941–1006.
HL D. Huybrechts, M. Lehn, The Geometry of Moduli Spaces of Sheaves. Aspects of Mathematics E31, Vieweg Verlag, 1997.
KLS D. Kaledin, M. Lehn, Ch. Sorger, Singular Symplectic Moduli Spaces. À paraître dans Invent. Math.
Kleiman S. Kleiman, Les théorèmes de finititude pour le foncteur de Picard, SGA 6, Exp. 13, Springer Lecture Notes 225, 1971.
OG1 K. O’Grady, Desingularized moduli spaces of sheaves on a K3, J. Reine Angew. Math. 512 (1999), 49–117.
OG2 K. O’Grady, A new six-dimensional irreducible symplectic variety. J. Algebraic Geom. 12 (2003), 435–505.
Rapagnetta A. Rapagnetta, Topological invariants of O’Grady’s six dimensional irreducible symplectic variety. math.AG/0406026.
Weyl H. Weyl, The Classical Groups, Princeton Math. Series 1, Princeton 1946.
Yoshioka K. Yoshioka, Moduli spaces of stable sheaves on abelian surfaces. Math. Annalen 321 (2001), 817–884.
Yoshioka2 K. Yoshioka, A note on Fourier-Mukai transform, math.AG/0112267.
Additional Information
Manfred Lehn
Affiliation:
Institut für Mathematik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
Email:
lehn@mathematik.uni-mainz.de
Christoph Sorger
Affiliation:
Institut Universitaire de France & Laboratoire de Mathématiques Jean Leray (UMR 6629 du CNRS), Université de Nantes, 2, Rue de la Houssinière, BP 92208, F-44322 Nantes Cedex 03, France
Email:
christoph.sorger@univ-nantes.fr
Received by editor(s):
April 22, 2005
Received by editor(s) in revised form:
September 29, 2005, and November 3, 2005
Published electronically:
May 24, 2006