Iwasawa theory of the fine Selmer group
Author:
Christian Wuthrich
Journal:
J. Algebraic Geom. 16 (2007), 83-108
DOI:
https://doi.org/10.1090/S1056-3911-06-00436-X
Published electronically:
June 21, 2006
MathSciNet review:
2257321
Full-text PDF
Abstract | References | Additional Information
Abstract: The fine Selmer group of an elliptic curve $E$ over a number field $K$ is obtained as a subgroup of the usual Selmer group by imposing stronger conditions at places above $p$. We prove a formula for the Euler-characteristic of the fine Selmer group over a $\mathbb {Z}_p$-extension and use it to compute explicit examples.
- Dominique Bernardi, Hauteur $p$-adique sur les courbes elliptiques, Seminar on Number Theory, Paris 1979–80, Progr. Math., vol. 12, Birkhäuser, Boston, Mass., 1981, pp. 1–14 (French). MR 633886
- Dominique Bernardi and Bernadette Perrin-Riou, Variante $p$-adique de la conjecture de Birch et Swinnerton-Dyer (le cas supersingulier), C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), no. 3, 227–232 (French, with English and French summaries). MR 1233417
- J. Coates, R. Greenberg, K. A. Ribet, and K. Rubin, Arithmetic theory of elliptic curves, Lecture Notes in Mathematics, vol. 1716, Springer-Verlag, Berlin; Centro Internazionale Matematico Estivo (C.I.M.E.), Florence, 1999. Lectures from the 3rd C.I.M.E. Session held in Cetraro, July 12–19, 1997; Edited by C. Viola. MR 1754684
- J. Coates and R. Sujatha, Galois cohomology of elliptic curves, Tata Institute of Fundamental Research Lectures on Mathematics, vol. 88, Published by Narosa Publishing House, New Delhi; for the Tata Institute of Fundamental Research, Mumbai, 2000. MR 1759312
- J. Coates and R. Sujatha, Fine Selmer groups of elliptic curves over $p$-adic Lie extensions, Math. Ann. 331 (2005), no. 4, 809–839. MR 2148798, DOI https://doi.org/10.1007/s00208-004-0609-z
- Hideo Imai, A remark on the rational points of abelian varieties with values in cyclotomic $Z_{p}$-extensions, Proc. Japan Acad. 51 (1975), 12–16. MR 371902
- Kazuya Kato, $p$-adic Hodge theory and values of zeta functions of modular forms, Astérisque 295 (2004), ix, 117–290 (English, with English and French summaries). Cohomologies $p$-adiques et applications arithmétiques. III. MR 2104361
- Shin-ichi Kobayashi, Iwasawa theory for elliptic curves at supersingular primes, Invent. Math. 152 (2003), no. 1, 1–36. MR 1965358, DOI https://doi.org/10.1007/s00222-002-0265-4
- Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2000. MR 1737196
- Bernadette Perrin-Riou, Théorie d’Iwasawa et hauteurs $p$-adiques, Invent. Math. 109 (1992), no. 1, 137–185 (French). MR 1168369, DOI https://doi.org/10.1007/BF01232022
- Bernadette Perrin-Riou, Fonctions $L$ $p$-adiques d’une courbe elliptique et points rationnels, Ann. Inst. Fourier (Grenoble) 43 (1993), no. 4, 945–995 (French, with English and French summaries). MR 1252935
- Bernadette Perrin-Riou, Fonctions $L$ $p$-adiques des représentations $p$-adiques, Astérisque 229 (1995), 198 (French, with English and French summaries). MR 1327803
- Robert Pollack, Iwasawa invariants of elliptic curves, Available online at the address http://math.bu.edu/people/rpollack/Data/data.html.
- Robert Pollack, On the $p$-adic $L$-function of a modular form at a supersingular prime, Duke Math. J. 118 (2003), no. 3, 523–558. MR 1983040, DOI https://doi.org/10.1215/S0012-7094-03-11835-9
- Karl Rubin, Euler systems, Annals of Mathematics Studies, vol. 147, Princeton University Press, Princeton, NJ, 2000. Hermann Weyl Lectures. The Institute for Advanced Study. MR 1749177
- Peter Schneider, $p$-adic height pairings. II, Invent. Math. 79 (1985), no. 2, 329–374. MR 778132, DOI https://doi.org/10.1007/BF01388978
- Christian Wuthrich, The fine Selmer group and height pairings, Ph.D. thesis, University of Cambridge, UK, 2004.
- Christian Wuthrich, On $p$-adic heights in families of elliptic curves, J. London Math. Soc. (2) 70 (2004), no. 1, 23–40. MR 2064750, DOI https://doi.org/10.1112/S0024610704005277
- ---, The fine Tate-Shafarevich group, to appear in Math. Proc. Cambridge Philos. Soc., 2005.
Additional Information
Christian Wuthrich
Affiliation:
Section de mathématiques, CSAG, École polytechnique fédérale, 1015 Lausanne, Switzerland
MR Author ID:
681572
Email:
christian.wuthrich@epfl.ch
Received by editor(s):
May 22, 2005
Received by editor(s) in revised form:
October 7, 2005
Published electronically:
June 21, 2006