Arithmetic properties of projective varieties of almost minimal degree
Authors:
Markus Brodmann and Peter Schenzel
Journal:
J. Algebraic Geom. 16 (2007), 347-400
DOI:
https://doi.org/10.1090/S1056-3911-06-00442-5
Published electronically:
October 11, 2006
MathSciNet review:
2274517
Full-text PDF
Abstract |
References |
Additional Information
Abstract:
We study the arithmetic properties of projective varieties of almost minimal degree, that is of non-degenerate irreducible projective varieties whose degree exceeds the codimension by precisely $2$. We notably show, that such a variety $X \subset {\mathbb P}^r$ is either arithmetically normal (and arithmetically Gorenstein) or a projection of a variety of minimal degree $\tilde {X} \subset {\mathbb P}^{r + 1}$ from an appropriate point $p \in {\mathbb P}^{r + 1} \setminus \tilde {X}$. We focus on the latter situation and study $X$ by means of the projection $\tilde {X} \rightarrow X$.
If $X$ is not arithmetically Cohen-Macaulay, the homogeneous coordinate ring $B$ of the projecting variety $\tilde {X}$ is the endomorphism ring of the canonical module $K(A)$ of the homogeneous coordinate ring $A$ of $X.$ If $X$ is non-normal and is maximally Del Pezzo, that is, arithmetically Cohen-Macaulay but not arithmetically normal, $B$ is just the graded integral closure of $A.$ It turns out, that the geometry of the projection $\tilde {X} \rightarrow X$ is governed by the arithmetic depth of $X$ in any case.
We study, in particular, the case in which the projecting variety $\tilde {X} \subset {\mathbb P}^{r + 1}$ is a (cone over a) rational normal scroll. In this case $X$ is contained in a variety of minimal degree $Y \subset {\mathbb P}^r$ such that $\operatorname {codim}_Y(X) = 1$. We use this to approximate the Betti numbers of $X$.
In addition, we present several examples to illustrate our results and we draw some of the links to Fujita’s classification of polarized varieties of $\Delta$-genus $1$.
References
- Claudia Albertini and Markus Brodmann, A bound on certain local cohomology modules and application to ample divisors, Nagoya Math. J. 163 (2001), 87–106. MR 1854390, DOI https://doi.org/10.1017/S0027763000007923
- Y\B{o}ichi Aoyama and Shiro Goto, On the endomorphism ring of the canonical module, J. Math. Kyoto Univ. 25 (1985), no. 1, 21–30. MR 777243, DOI https://doi.org/10.1215/kjm/1250521156
- Edoardo Ballico, On singular curves in the case of positive characteristic, Math. Nachr. 141 (1989), 267–273. MR 1014431, DOI https://doi.org/10.1002/mana.19891410124
- Markus Brodmann and Peter Schenzel, Curves of degree $r+2$ in $\Bbb P^r$: cohomological, geometric, and homological aspects, J. Algebra 242 (2001), no. 2, 577–623. MR 1848961, DOI https://doi.org/10.1006/jabr.2001.8847
- Markus Brodmann and Peter Schenzel, On projective curves of maximal regularity, Math. Z. 244 (2003), no. 2, 271–289. MR 1992539, DOI https://doi.org/10.1007/s00229-011-0426-0
- Brodmann, M., Schenzel, P.: On varieties of almost minimal degree in small codimension. Preprint, 2005.
- M. P. Brodmann and R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics, vol. 60, Cambridge University Press, Cambridge, 1998. MR 1613627
- David A. Buchsbaum and David Eisenbud, Generic free resolutions and a family of generically perfect ideals, Advances in Math. 18 (1975), no. 3, 245–301. MR 396528, DOI https://doi.org/10.1016/0001-8708%2875%2990046-8
- Michael L. Catalano-Johnson, The possible dimensions of the higher secant varieties, Amer. J. Math. 118 (1996), no. 2, 355–361. MR 1385282
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960
- David Eisenbud, The geometry of syzygies, Graduate Texts in Mathematics, vol. 229, Springer-Verlag, New York, 2005. A second course in commutative algebra and algebraic geometry. MR 2103875
- David Eisenbud and Joe Harris, On varieties of minimal degree (a centennial account), Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 3–13. MR 927946, DOI https://doi.org/10.1090/pspum/046.1/927946
- H. Flenner, L. O’Carroll, and W. Vogel, Joins and intersections, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1999. MR 1724388
- Takao Fujita, Classification of projective varieties of $\Delta $-genus one, Proc. Japan Acad. Ser. A Math. Sci. 58 (1982), no. 3, 113–116. MR 664549
- Takao Fujita, Projective varieties of $\Delta $-genus one, Algebraic and topological theories (Kinosaki, 1984) Kinokuniya, Tokyo, 1986, pp. 149–175. MR 1102257
- Takao Fujita, Classification theories of polarized varieties, London Mathematical Society Lecture Note Series, vol. 155, Cambridge University Press, Cambridge, 1990. MR 1162108
- Shiro Goto, On Buchsbaum rings obtained by gluing, Nagoya Math. J. 83 (1981), 123–135. MR 632649
- Mark L. Green, Koszul cohomology and the geometry of projective varieties, J. Differential Geom. 19 (1984), no. 1, 125–171. MR 739785
- M. Green and R. Lazarsfeld, Some results on the syzygies of finite sets and algebraic curves, Compositio Math. 67 (1988), no. 3, 301–314. MR 959214
- Greuel, G.M., Pfister, G. et al: Singular $3.0$, a computer algebra system for polynomial computations. Center for Computer Algebra, University of Kaiserslautern (2005) (http://www.singular.uni-kl.de).
- Joe Harris, Algebraic geometry, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1992. A first course. MR 1182558
- Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
- Le Tuan Hoa, Jürgen Stückrad, and Wolfgang Vogel, Towards a structure theory for projective varieties of ${\rm degree}={\rm codimension}+2$, J. Pure Appl. Algebra 71 (1991), no. 2-3, 203–231. MR 1117635, DOI https://doi.org/10.1016/0022-4049%2891%2990148-U
- Jean-Pierre Jouanolou, Théorèmes de Bertini et applications, Progress in Mathematics, vol. 42, Birkhäuser Boston, Inc., Boston, MA, 1983 (French). MR 725671
- Nagel, U.: Über Gradschranken für Syzygien und komologische Hilbertfunktionen. Dissertation, Universität Paderborn (1990).
- Uwe Nagel, On the minimal free resolution of $r+3$ points in projective $r$-space, J. Pure Appl. Algebra 96 (1994), no. 1, 23–38. MR 1297438, DOI https://doi.org/10.1016/0022-4049%2894%2990084-1
- Nagel, U.: Minimal free resolution of projective subschemes of small degree. Preprint, 2005.
- Peter Schenzel, Dualisierende Komplexe in der lokalen Algebra und Buchsbaum-Ringe, Lecture Notes in Mathematics, vol. 907, Springer-Verlag, Berlin-New York, 1982 (German). With an English summary. MR 654151
- Richard P. Stanley, Hilbert functions of graded algebras, Advances in Math. 28 (1978), no. 1, 57–83. MR 485835, DOI https://doi.org/10.1016/0001-8708%2878%2990045-2
References
- Albertini, C., Brodmann, M.: A bound on certain local cohomology modules and application to ample divisors. Nagoya Mathematical Journal 163 (2001), 87–106. MR 1854390 (2002g:14003)
- Aoyama, Y., Gôto, S.: On the endomorphism ring of the canonical module. J. Math. Kyoto Univ. 25 (1985), 21–30. MR 0777243 (86e:13021)
- Ballico, E.: On singular curves in the case of positive characteristic. Math. Nachr. 141 (1989), 267–273. MR 1014431 (90h:14042)
- Brodmann, M., Schenzel, P.: Curves of degree $r + 2$ in ${\mathbb P}^r$: Cohomological, geometric, and homological aspects. J. of Algebra 242 (2001), 577–623. MR 1848961 (2002e:14049)
- Brodmann, M., Schenzel, P.: On projective curves of maximal regularity. Math. Z. 244 (2003), 271–289. MR 1992539 (2004d:14035)
- Brodmann, M., Schenzel, P.: On varieties of almost minimal degree in small codimension. Preprint, 2005.
- Brodmann, M., Sharp, R.Y.: Local cohomology: an algebraic introduction with geometric applications. Cambridge Studies in Advances Mathematics, Vol. 60, Cambridge University Press, Cambridge, UK, 1998. MR 1613627 (99h:13020)
- Buchsbaum, D., Eisenbud, D.: Generic free resolutions and a family of generically perfect ideals. Advances in Math. 18 (1975), 245–301. MR 0396528 (53:391)
- Catalano-Johnson, M.L.: The possible dimensions of the higher secant varieties. American J. Mathem. 118 (1996), 355–361. MR 1385282 (97a:14058)
- Eisenbud, D.: Commutative algebra. With a view toward algebraic geometry. Graduate Texts in Mathematics Vol. 150, Springer-Verlag, New York / Berlin, 1994. MR 1322960 (97a:13001)
- Eisenbud, D.: The geometry of syzygies. A second course in commutative algebra and algebraic geometry. Graduate Texts in Math., Vol. 229, Springer, New York, 2005. MR 2103875 (2005h:13021)
- Eisenbud, D., Harris, J.: On varieties of minimal degree (a centennial account). In Proceedings of Symposium of Pure Mathematics, Vol. 46, pp. 3–13, American Mathematical Society, Providence, 1987. MR 0927946 (89f:14042)
- Flenner, H., O’Carroll, L., Vogel, W.: Joins and intersections. Springer Monographs in Mathematics, Springer-Verlag Berlin / Heidelberg / New York, 1999. MR 1724388 (2001b:14010)
- Fujita, T.: Classification of projective varieties of $\Delta$-genus one. Proc. Japan Academy of Science, Ser. A Math. Sci 58 (1982), 113–116. MR 0664549 (83g:14003)
- Fujita, T.: Projective varieties of $\Delta$-genus one. In Algebraic and Topological Theories – To the Memory of Dr. Takehiko Miyata (Kinokuniya, Tokyo, 1986), 149–175. MR 1102257
- Fujita, T.: Classification theories of polarized varieties, London Mathematical Society Lecture Notes Series 155, Cambridge University Press, 1990. MR 1162108 (93e:14009)
- Gôto, S.: On Buchsbaum rings obtained by gluing. Nagoya Math. J. 83 (1981), 123–135. MR 0632649 (82m:13015)
- Green, M.: Koszul cohomology and the geometry of projective varieties. J. Differential Geometry 19 (1984), 125–171. MR 0739785 (85e:14022)
- Green, M., Lazarsfeld, R.: Some results on the syzygies of finite sets and algebraic curves. Compositio Math. 67 (1988), 301–314. MR 0959214 (90d:14034)
- Greuel, G.M., Pfister, G. et al: Singular $3.0$, a computer algebra system for polynomial computations. Center for Computer Algebra, University of Kaiserslautern (2005) (http://www.singular.uni-kl.de).
- Harris, J.: Algebraic geometry: A first course. Graduate Texts in Mathematics, Vol. 133, Springer-Verlag, New York, 1992. MR 1182558 (93j:14001)
- Hartshorne, R.: Algebraic geometry. Graduate Texts in Mathematics Vol 52, Springer-Verlag, New York, 1977. MR 0463157 (57:3116)
- Hoa, T., Stückrad, J., Vogel, W.: Towards a structure theory of projective varieties of degree $=$ codimension $+ 2$. J. Pure and Appl. Algebra 71 (1991), 203–231. MR 1117635 (92f:14002)
- Jouanolou, J.P.: Théorèmes de Bertini et applications. Progress in Mathematics, Vol. 42, Birkhäuser, Basel, 1983. MR 0725671 (86b:13007)
- Nagel, U.: Über Gradschranken für Syzygien und komologische Hilbertfunktionen. Dissertation, Universität Paderborn (1990).
- Nagel, U.: On the minimal free resolution of $r + 3$ points in projective $r$-space. J. Pure and Applied Algebra 96 (1994), 23–38. MR 1297438 (95g:13017)
- Nagel, U.: Minimal free resolution of projective subschemes of small degree. Preprint, 2005.
- Schenzel, P.: Dualisierende Komplexe in der lokalen Algebra und Buchsbaum-Ringe. Lecture Notes in Mathematics Vol. 907, Springer-Verlag, Berlin / Heidelberg / New York, 1982. MR 0654151 (83i:13013)
- Stanley, R.P.: Hilbert functions and graded algebras. Advances in Math. 28 (1978), 57–83. MR 0485835 (58:5637)
Additional Information
Markus Brodmann
Affiliation:
Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Schwitzerland
MR Author ID:
41830
Email:
brodmann@math.unizh.ch
Peter Schenzel
Affiliation:
Martin-Luther-Universität Halle-Wittenberg, Institut Für Informatik, Von-Seckendorff-Platz 1, D-06120 Halle (Saale), Germany
MR Author ID:
155825
ORCID:
0000-0003-1569-5100
Email:
schenzel@informatik.uni-halle.de
Received by editor(s):
August 10, 2005
Received by editor(s) in revised form:
December 12, 2005
Published electronically:
October 11, 2006
Additional Notes:
The second author was partially supported by the Swiss National Science Foundation (Projects No. 20-66980-01 and No. 20-103491/1)