Lie symmetries of the Chow group of a Jacobian and the tautological subring
Author:
A. Polishchuk
Journal:
J. Algebraic Geom. 16 (2007), 459-476
DOI:
https://doi.org/10.1090/S1056-3911-06-00431-0
Published electronically:
June 21, 2006
MathSciNet review:
2306276
Full-text PDF
Abstract |
References |
Additional Information
Abstract: Let be the Jacobian of a smooth projective curve. We define a natural action of the Lie algebra of polynomial Hamiltonian vector fields on the plane, vanishing at the origin, on the Chow group . Using this action we obtain some relations between tautological cycles in .
- 1.
A. Beauville, Diviseurs spéciaux et intersections de cycles dans la jacobienne d'une courbe algébrique, in Enumerative geometry and classical algebraic geometry, 133-142, Birkhauser, 1982. MR 0685767 (84m:14036)
- 2.
A. Beauville, Quelques remarques sur la transformation de Fourier dans l'anneau de Chow d'une variété abélienne, Algebraic Geometry (Tokyo/Kyoto 1982), Lecture Notes in Math. 1016, 238-260. Springer-Verlag, 1983. MR 0726428 (86e:14002)
- 3.
A. Beauville, Sur l'anneau de Chow d'une variété abélienne, Math. Ann. 273 (1986), 647-651. MR 0826463 (87g:14049)
- 4.
Arnaud
Beauville, Algebraic cycles on Jacobian varieties, Compos.
Math. 140 (2004), no. 3, 683–688. MR
2041776, https://doi.org/10.1112/S0010437X03000733
- 5.
G. Ceresa, is not algebraically equivalent to in its Jacobian, Annals of Math., 117 (1983), 285-291. MR 0690847 (84f:14005)
- 6.
Alberto
Collino, Poincaré’s formulas and hyperelliptic
curves, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur.
109 (1975), no. 1-2, 89–101 (English, with
Italian summary). MR
0417173
- 7.
Elisabetta
Colombo and Bert
van Geemen, Note on curves in a Jacobian, Compositio Math.
88 (1993), no. 3, 333–353. MR
1241954
- 8.
D. Fuks, Cohomology of infinite-dimensional Lie algebras, Contemporary Soviet Mathematics, Consultants Bureau, New York, 1986. MR 0874337 (88b:17001)
- 9.
Klaus
Künnemann, A Lefschetz decomposition for Chow motives of
abelian schemes, Invent. Math. 113 (1993),
no. 1, 85–102. MR
1223225, https://doi.org/10.1007/BF01244303
- 10.
S. Mukai, Duality between and with its application to Picard sheaves. Nagoya Math. J. 81 (1981), 153-175. MR 0607081 (82f:14036)
- 11.
A.
Polishchuk, Analogue of Weil representation for abelian
schemes, J. Reine Angew. Math. 543 (2002),
1–37. MR
1887877, https://doi.org/10.1515/crll.2002.016
- 12.
Alexander
Polishchuk, Abelian varieties, theta functions and the Fourier
transform, Cambridge Tracts in Mathematics, vol. 153, Cambridge
University Press, Cambridge, 2003. MR
1987784
- 13.
A.
Polishchuk, Universal algebraic equivalences between tautological
cycles on Jacobians of curves, Math. Z. 251 (2005),
no. 4, 875–897. MR
2190148, https://doi.org/10.1007/s00209-005-0838-1
- 14.
R.
L. E. Schwarzenberger, Jacobians and symmetric products,
Illinois J. Math. 7 (1963), 257–268. MR
0151459
- 1.
- A. Beauville, Diviseurs spéciaux et intersections de cycles dans la jacobienne d'une courbe algébrique, in Enumerative geometry and classical algebraic geometry, 133-142, Birkhauser, 1982. MR 0685767 (84m:14036)
- 2.
- A. Beauville, Quelques remarques sur la transformation de Fourier dans l'anneau de Chow d'une variété abélienne, Algebraic Geometry (Tokyo/Kyoto 1982), Lecture Notes in Math. 1016, 238-260. Springer-Verlag, 1983. MR 0726428 (86e:14002)
- 3.
- A. Beauville, Sur l'anneau de Chow d'une variété abélienne, Math. Ann. 273 (1986), 647-651. MR 0826463 (87g:14049)
- 4.
- A. Beauville, Algebraic cycles on Jacobian varieties, Compositio Math. 140 (2004), 683-688. MR 2041776 (2005h:14019)
- 5.
- G. Ceresa, is not algebraically equivalent to in its Jacobian, Annals of Math., 117 (1983), 285-291. MR 0690847 (84f:14005)
- 6.
- A. Collino, Poincaré's formulas and hyperelliptic curves, Atti Acc. Sc. Torino 109 (1974-1975), 89-101. MR 0417173 (54:5231)
- 7.
- E. Colombo, B. van Geemen, Note on curves in a Jacobian, Compositio Math. 88 (1993), 333-353. MR 1241954 (95j:14030)
- 8.
- D. Fuks, Cohomology of infinite-dimensional Lie algebras, Contemporary Soviet Mathematics, Consultants Bureau, New York, 1986. MR 0874337 (88b:17001)
- 9.
- K. Künnemann, A Lefschetz decomposition for Chow motives of abelian schemes, Invent. Math. 113 (1993), 85-102. MR 1223225 (95d:14004)
- 10.
- S. Mukai, Duality between and with its application to Picard sheaves. Nagoya Math. J. 81 (1981), 153-175. MR 0607081 (82f:14036)
- 11.
- A. Polishchuk, Analogue of Weil representation for abelian schemes, J. Reine Angew. Math. 543 (2002), 1-37. MR 1887877 (2003k:11097)
- 12.
- A. Polishchuk, Abelian Varieties, Theta Functions and the Fourier Transform, Cambridge University Press, 2003. MR 1987784 (2004m:14094)
- 13.
- A. Polishchuk, Universal algebraic equivalences between algebraic cycles on Jacobians of curves, Math. Zeitschrift 251 (2005), no. 4, 875-897. MR 2190148
- 14.
- R. L. E. Schwarzenberger, Jacobians and symmetric products, Illinois J. Math. 7 (1963), 257-268. MR 0151459 (27:1444)
Additional Information
A. Polishchuk
Affiliation:
Department of Mathematics, University of Oregon, Eugene, Oregon 97405
Email:
apolish@math.uoregon.edu
DOI:
https://doi.org/10.1090/S1056-3911-06-00431-0
Received by editor(s):
July 14, 2005
Received by editor(s) in revised form:
September 3, 2005
Published electronically:
June 21, 2006
Additional Notes:
Supported in part by NSF grant DMS-0302215