Lagrangian fibrations on Hilbert schemes of points on K3 surfaces
Author:
Justin Sawon
Journal:
J. Algebraic Geom. 16 (2007), 477-497
DOI:
https://doi.org/10.1090/S1056-3911-06-00453-X
Published electronically:
December 6, 2006
MathSciNet review:
2306277
Full-text PDF
Abstract |
References |
Additional Information
Abstract: Let be the Hilbert scheme of points on a K3 surface . Suppose that where is a smooth curve with . We prove that is a Lagrangian fibration.
- 1.
A. Beauville, Variétés Kählériennes dont la première classe de Chern est nulle, Jour. Diff. Geom. 18 (1983), 755-782. MR 0730926 (86c:32030)
- 2.
Arnaud
Beauville, Counting rational curves on 𝐾3 surfaces,
Duke Math. J. 97 (1999), no. 1, 99–108. MR
1682284, https://doi.org/10.1215/S0012-7094-99-09704-1
- 3.
A. Caldararu, Derived categories of twisted sheaves on Calabi-Yau manifolds, Cornelly, Ph.D. thesis, May 2000 (available from www.math.upenn.edu/andreic/).
- 4.
C. D'Souza, Compactification of generalised Jacobians, Proc. Indian Acad. Sci. A88 (1979), 419-457. MR 0569548 (81h:14004)
- 5.
Robert
Friedman, Algebraic surfaces and holomorphic vector bundles,
Universitext, Springer-Verlag, New York, 1998. MR
1600388
- 6.
Baohua
Fu, Abelian fibrations on 𝑆^{[𝑛]}, C. R. Math.
Acad. Sci. Paris 337 (2003), no. 9, 593–596
(English, with English and French summaries). MR
2017732, https://doi.org/10.1016/j.crma.2003.09.022
- 7.
P. Griffiths and J. Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley, New York, 1978. MR 0507725 (80b:14001)
- 8.
M.
Gross, D.
Huybrechts, and D.
Joyce, Calabi-Yau manifolds and related geometries,
Universitext, Springer-Verlag, Berlin, 2003. Lectures from the Summer
School held in Nordfjordeid, June 2001. MR
1963559
- 9.
M. Gulbrandsen, Lagrangian fibrations on generalized Kummer varieties, preprint math.AG/0510145.
- 10.
Brendan
Hassett and Yuri
Tschinkel, Abelian fibrations and rational points on symmetric
products, Internat. J. Math. 11 (2000), no. 9,
1163–1176. MR
1809306, https://doi.org/10.1142/S0129167X00000544
- 11.
Daniel
Huybrechts and Manfred
Lehn, The geometry of moduli spaces of sheaves, Aspects of
Mathematics, E31, Friedr. Vieweg & Sohn, Braunschweig, 1997. MR
1450870
- 12.
Daniel
Huybrechts and Paolo
Stellari, Equivalences of twisted 𝐾3 surfaces, Math.
Ann. 332 (2005), no. 4, 901–936. MR
2179782, https://doi.org/10.1007/s00208-005-0662-2
- 13.
A. Iliev and K. Ranestad, The abelian fibration on the Hilbert cube of a K3 surface of genus 9, preprint math.AG/0507016.
- 14.
R. Lazarsfeld, Brill-Noether-Petri without degenerations, J. Diff. Geom. 23 (1986), no. 3, 299-307. MR 0852158 (88b:14019)
- 15.
M. Lieblich, Moduli of twisted sheaves, preprint math.AG/0411337.
- 16.
Dimitri
G. Markushevich, Completely integrable projective symplectic
4-dimensional varieties, Izv. Ross. Akad. Nauk Ser. Mat.
59 (1995), no. 1, 157–184; English transl.,
Izv. Math. 59 (1995), no. 1, 159–187. MR
1328559, https://doi.org/10.1070/IM1995v059n01ABEH000007
- 17.
D.
Markushevich, Lagrangian families of Jacobians of genus 2
curves, J. Math. Sci. 82 (1996), no. 1,
3268–3284. Algebraic geometry, 5. MR
1423641, https://doi.org/10.1007/BF02362472
- 18.
D. Markushevich, Rational Lagrangian fibrations on punctual Hilbert schemes of K3 surfaces, preprint math.AG/0509346.
- 19.
Daisuke
Matsushita, On fibre space structures of a projective irreducible
symplectic manifold, Topology 38 (1999), no. 1,
79–83. MR
1644091, https://doi.org/10.1016/S0040-9383(98)00003-2
Daisuke
Matsushita, Addendum: “On fibre space structures of a
projective irreducible symplectic manifold” [Topology 38 (1999), no.
1, 79–83; MR1644091 (99f:14054)], Topology 40
(2001), no. 2, 431–432. MR
1808227, https://doi.org/10.1016/S0040-9383(99)00048-8
- 20.
Daisuke
Matsushita, Equidimensionality of Lagrangian fibrations on
holomorphic symplectic manifolds, Math. Res. Lett. 7
(2000), no. 4, 389–391. MR
1783616, https://doi.org/10.4310/MRL.2000.v7.n4.a4
- 21.
J-Y. Mérindol, Propriétés élémentaires des surfaces K3, Geometry of K3 surfaces: moduli and periods, Astérisque 126, (1985), 45-57. MR 0785222
- 22.
S. Mukai, Symplectic structure of the moduli space of simple sheaves on an abelian or K3 surface, Invent. Math. 77 (1984), 101-116. MR 0751133 (85j:14016)
- 23.
S. Mukai, On the moduli space of bundles on K3 surfaces. I, in Vector Bundles on Algebraic Varieties, M. F. Atiyah et al., Oxford University Press (1987), 341-413. MR 0893604 (88i:14036)
- 24.
S. Mukai, Moduli of vector bundles on K3 surfaces and symplectic manifolds. Sugaku Expositions 1 (1988), no. 2, 139-174. MR 0922020 (89h:32057)
- 25.
Kieran
G. O’Grady, The weight-two Hodge structure of moduli spaces
of sheaves on a 𝐾3 surface, J. Algebraic Geom.
6 (1997), no. 4, 599–644. MR
1487228
- 26.
D.
O. Orlov, Equivalences of derived categories and 𝐾3
surfaces, J. Math. Sci. (New York) 84 (1997),
no. 5, 1361–1381. Algebraic geometry, 7. MR
1465519, https://doi.org/10.1007/BF02399195
- 27.
Justin
Sawon, Abelian fibred holomorphic symplectic manifolds,
Turkish J. Math. 27 (2003), no. 1, 197–230. MR
1975339
- 28.
Montserrat
Teixidor i Bigas, Brill-Noether theory for stable vector
bundles, Duke Math. J. 62 (1991), no. 2,
385–400. MR
1104529, https://doi.org/10.1215/S0012-7094-91-06215-0
- 29.
K. Yoshioka, Irreducibility of moduli spaces of vector bundles on K3 surfaces, preprint math.AG/9907001.
- 30.
Kōta
Yoshioka, Moduli spaces of stable sheaves on abelian surfaces,
Math. Ann. 321 (2001), no. 4, 817–884. MR
1872531, https://doi.org/10.1007/s002080100255
- 31.
K. Yoshioka, Moduli spaces of twisted sheaves on a projective variety, preprint math.AG/0411538.
- 1.
- A. Beauville, Variétés Kählériennes dont la première classe de Chern est nulle, Jour. Diff. Geom. 18 (1983), 755-782. MR 0730926 (86c:32030)
- 2.
- A. Beauville, Counting rational curves on K3 surfaces, Duke Math. J. 97 (1999), no. 1, 99-108. MR 1682284 (2000c:14073)
- 3.
- A. Caldararu, Derived categories of twisted sheaves on Calabi-Yau manifolds, Cornelly, Ph.D. thesis, May 2000 (available from www.math.upenn.edu/andreic/).
- 4.
- C. D'Souza, Compactification of generalised Jacobians, Proc. Indian Acad. Sci. A88 (1979), 419-457. MR 0569548 (81h:14004)
- 5.
- R. Friedman, Algebraic surfaces and holomorphic vector bundles, Universitext, Springer-Verlag, New York, 1998. MR 1600388 (99c:14056)
- 6.
- B. Fu, Abelian fibrations on . C. R. Math. Acad. Sci. Paris 337 (2003), no. 9, 593-596. MR 2017732 (2004k:14016)
- 7.
- P. Griffiths and J. Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley, New York, 1978. MR 0507725 (80b:14001)
- 8.
- M. Gross, D. Huybrechts, and D. Joyce, Calabi-Yau manifolds and related geometries, Springer Universitext, 2003. MR 1963559 (2004c:14075)
- 9.
- M. Gulbrandsen, Lagrangian fibrations on generalized Kummer varieties, preprint math.AG/0510145.
- 10.
- B. Hassett and Y. Tschinkel, Abelian fibrations and rational points on symmetric products. Internat. J. Math. 11 (2000), no. 9, 1163-1176. MR 1809306 (2002a:14010)
- 11.
- D. Huybrechts and M. Lehn, The geometry of moduli spaces of sheaves. Aspects of Mathematics, E31, Vieweg, 1997. MR 1450870 (98g:14012)
- 12.
- D. Huybrechts and P. Stellari, Equivalences of twisted K3 surfaces, Math. Ann. 332 (2005), no. 4, 901-936. MR 2179782
- 13.
- A. Iliev and K. Ranestad, The abelian fibration on the Hilbert cube of a K3 surface of genus 9, preprint math.AG/0507016.
- 14.
- R. Lazarsfeld, Brill-Noether-Petri without degenerations, J. Diff. Geom. 23 (1986), no. 3, 299-307. MR 0852158 (88b:14019)
- 15.
- M. Lieblich, Moduli of twisted sheaves, preprint math.AG/0411337.
- 16.
- D. Markushevich, Completely integrable projective symplectic 4-dimensional varieties, Izvestiya: Mathematics 59 (1995), no. 1, 159-187. MR 1328559 (96h:14048)
- 17.
- D. Markushevich, Lagrangian families of Jacobians of genus 2 curves, J. Math. Sci. 82 (1996), no. 1, 3268-3284. MR 1423641 (98b:14034)
- 18.
- D. Markushevich, Rational Lagrangian fibrations on punctual Hilbert schemes of K3 surfaces, preprint math.AG/0509346.
- 19.
- D. Matsushita, On fibre space structures of a projective irreducible symplectic manifold, Topology 38 (1999), No. 1, 79-83. Addendum, Topology 40 (2001), no. 2, 431-432. MR 1644091 (99f:14054); MR 1808227 (2002d:32031)
- 20.
- D. Matsushita, Equidimensionality of Lagrangian fibrations on holomorphic symplectic manifolds, Math. Res. Lett. 7 (2000), no. 4, 389-391. MR 1783616 (2001f:32041)
- 21.
- J-Y. Mérindol, Propriétés élémentaires des surfaces K3, Geometry of K3 surfaces: moduli and periods, Astérisque 126, (1985), 45-57. MR 0785222
- 22.
- S. Mukai, Symplectic structure of the moduli space of simple sheaves on an abelian or K3 surface, Invent. Math. 77 (1984), 101-116. MR 0751133 (85j:14016)
- 23.
- S. Mukai, On the moduli space of bundles on K3 surfaces. I, in Vector Bundles on Algebraic Varieties, M. F. Atiyah et al., Oxford University Press (1987), 341-413. MR 0893604 (88i:14036)
- 24.
- S. Mukai, Moduli of vector bundles on K3 surfaces and symplectic manifolds. Sugaku Expositions 1 (1988), no. 2, 139-174. MR 0922020 (89h:32057)
- 25.
- K. O'Grady, The weight-two Hodge structure of moduli spaces of sheaves on a K3 surface, J. Algebraic Geom. 6 (1997), no. 4, 599-644. MR 1487228 (2000a:14052)
- 26.
- D. Orlov, Equivalences of derived categories and K3 surfaces, Algebraic geometry, 7., J. Math. Sci. 84 (1997), no. 5, 1361-1381. MR 1465519 (99a:14054)
- 27.
- J. Sawon, Abelian fibred holomorphic symplectic manifolds, Turkish Jour. Math. 27 (2003), no. 1, 197-230. MR 1975339 (2004g:32021)
- 28.
- M. Teixidor i Bigas, Brill-Noether theory for stable vector bundles, Duke Math. J. 62 (1991), no. 2, 385-400. MR 1104529 (92e:14029)
- 29.
- K. Yoshioka, Irreducibility of moduli spaces of vector bundles on K3 surfaces, preprint math.AG/9907001.
- 30.
- K. Yoshioka, Moduli spaces of stable sheaves on abelian surfaces, Math. Ann. 321 (2001), no. 4, 817-884. MR 1872531 (2002k:14020)
- 31.
- K. Yoshioka, Moduli spaces of twisted sheaves on a projective variety, preprint math.AG/0411538.
Additional Information
Justin Sawon
Affiliation:
Department of Mathematics, SUNY at Stony Brook, Stony Brook, New York 11794-3651
Address at time of publication:
Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523-1874
Email:
sawon@math.sunysb.edu; sawon@math.colostate.edu
DOI:
https://doi.org/10.1090/S1056-3911-06-00453-X
Received by editor(s):
September 10, 2005
Received by editor(s) in revised form:
February 22, 2006
Published electronically:
December 6, 2006
Additional Notes:
The author is grateful for the hospitality of the Johannes-Gutenberg Universität, Mainz, where this article was written. The author is supported by NSF grant number 0305865.