A formula for non-equioriented quiver orbits of type
Authors:
Anders Skovsted Buch and Richárd Rimányi
Journal:
J. Algebraic Geom. 16 (2007), 531-546
DOI:
https://doi.org/10.1090/S1056-3911-07-00441-9
Published electronically:
February 21, 2007
MathSciNet review:
2306279
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We prove a positive combinatorial formula for the equivariant class of an orbit closure in the space of representations of an arbitrary quiver of type . Our formula expresses this class as a sum of products of Schubert polynomials indexed by a generalization of the minimal lace diagrams of Knutson, Miller, and Shimozono. The proof is based on the interpolation method of Fehér and Rimányi. We also conjecture a more general formula for the equivariant Grothendieck class of an orbit closure.
- 1.
S. Abeasis and A. Del Fra, Degenerations for the representations of an equioriented quiver of type , Boll. Un. Mat. Ital. Suppl. 1980, 157-171. MR 84e:16019
- 2.
-, Degenerations for the representations of a quiver of type , J. Algebra 93 (1985), 376-412. MR 86j:16028
- 3.
I.
N. Bernšteĭn, I.
M. Gel′fand, and V.
A. Ponomarev, Coxeter functors, and Gabriel’s theorem,
Uspehi Mat. Nauk 28 (1973), no. 2(170), 19–33
(Russian). MR
0393065
- 4.
Grzegorz
Bobiński and Grzegorz
Zwara, Normality of orbit closures for Dynkin quivers of type
𝔸_{𝕟}, Manuscripta Math. 105 (2001),
no. 1, 103–109. MR
1885816, https://doi.org/10.1007/PL00005871
- 5.
Anders
Skovsted Buch, Grothendieck classes of quiver varieties, Duke
Math. J. 115 (2002), no. 1, 75–103. MR
1932326, https://doi.org/10.1215/S0012-7094-02-11513-0
- 6.
Anders
Skovsted Buch, Alternating signs of quiver
coefficients, J. Amer. Math. Soc.
18 (2005), no. 1,
217–237. MR
2114821, https://doi.org/10.1090/S0894-0347-04-00473-4
- 7.
Anders
S. Buch, László
M. Fehér, and Richárd
Rimányi, Positivity of quiver coefficients through Thom
polynomials, Adv. Math. 197 (2005), no. 1,
306–320. MR
2166185, https://doi.org/10.1016/j.aim.2004.10.019
- 8.
Anders
Skovsted Buch and William
Fulton, Chern class formulas for quiver varieties, Invent.
Math. 135 (1999), no. 3, 665–687. MR
1669280, https://doi.org/10.1007/s002220050297
- 9.
László
M. Fehér and Richárd
Rimányi, Calculation of Thom polynomials and other
cohomological obstructions for group actions, Real and complex
singularities, Contemp. Math., vol. 354, Amer. Math. Soc.,
Providence, RI, 2004, pp. 69–93. MR
2087805, https://doi.org/10.1090/conm/354/06475
- 10.
László
Fehér and Richárd
Rimányi, Classes of degeneracy loci for quivers: the Thom
polynomial point of view, Duke Math. J. 114 (2002),
no. 2, 193–213. MR
1920187, https://doi.org/10.1215/S0012-7094-02-11421-5
- 11.
W. Fulton, Notes from a course on equivariant cohomology, Winter, 2003.
- 12.
-, Intersection theory, Springer-Verlag, 1984, 1998. MR 0732620 (85k:14004)
- 13.
Peter
Gabriel, Unzerlegbare Darstellungen. I, Manuscripta Math.
6 (1972), 71–103; correction, ibid. 6 (1972), 309
(German, with English summary). MR
0332887, https://doi.org/10.1007/BF01298413
- 14.
M.
É. Kazarian, Characteristic classes of singularity
theory, The Arnold-Gelfand mathematical seminars, Birkhäuser
Boston, Boston, MA, 1997, pp. 325–340. MR
1429898, https://doi.org/10.1007/978-1-4612-4122-5_15
- 15.
A. Knutson, E. Miller, and M. Shimozono, Four positive formulas for type quiver polynomials, preprint, 2003.
- 16.
A. Lascoux and M.-P. Schützenberger, Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), 447-450. MR 0660739 (83e:14039)
- 17.
-, Structure de Hopf de l'anneau de cohomologie et de l'anneau de Grothendieck d'une variété de drapeaux, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), 629-633. MR 0686357 (84b:14030)
- 18.
Ezra
Miller, Alternating formulas for 𝐾-theoretic quiver
polynomials, Duke Math. J. 128 (2005), no. 1,
1–17. MR
2137947, https://doi.org/10.1215/S0012-7094-04-12811-8
- 19.
Claus
Michael Ringel, Representations of 𝐾-species and
bimodules, J. Algebra 41 (1976), no. 2,
269–302. MR
0422350, https://doi.org/10.1016/0021-8693(76)90184-8
- 1.
- S. Abeasis and A. Del Fra, Degenerations for the representations of an equioriented quiver of type , Boll. Un. Mat. Ital. Suppl. 1980, 157-171. MR 84e:16019
- 2.
- -, Degenerations for the representations of a quiver of type , J. Algebra 93 (1985), 376-412. MR 86j:16028
- 3.
- I. N. Bernstein, I. M. Gel'fand, and V. A. Ponomarev, Coxeter functors and Gabriel's theorem, Uspehi Mat. Nauk 28 (1973), 19-33. MR 0393065 (52:13876)
- 4.
- G. Bobinski and G. Zwara, Normality of orbit closures for Dynkin quivers of type , Manuscripta Math. 105 (2001), no. 1, 103-109. MR 1885816 (2002k:14077)
- 5.
- A. S. Buch, Grothendieck classes of quiver varieties, Duke Math. J. 115 (2002), no. 1, 75-103. MR 1932326 (2003m:14018)
- 6.
- -, Alternating signs of quiver coefficients, J. Amer. Math. Soc. 18 (2005), no. 1, 217-237. MR 2114821 (2006d:14052)
- 7.
- A. S. Buch, L. M. Fehér, and R. Rimányi, Positivity of quiver coefficients through Thom polynomials, Adv. Math. 197 (2005), 306-320. MR 2166185
- 8.
- A. S. Buch and W. Fulton, Chern class formulas for quiver varieties, Invent. Math. 135 (1999), 665-687. MR 1669280 (2000f:14087)
- 9.
- L. M. Fehér and R. Rimányi, Calculation of Thom polynomials and other cohomological obstructions for group actions, Real and Complex Singularities (Sao Carlos, 2002), Ed. T. Gaffney and M. Ruas, Contemp. Math., 354, Amer. Math. Soc., Providence, RI, 2004, pp. 69-93. MR 2087805 (2005j:58052)
- 10.
- -, Classes of degeneracy loci for quivers: the Thom polynomial point of view, Duke Math. J. 114 (August 2002), no. 2, 193-213. MR 1920187 (2003j:14005)
- 11.
- W. Fulton, Notes from a course on equivariant cohomology, Winter, 2003.
- 12.
- -, Intersection theory, Springer-Verlag, 1984, 1998. MR 0732620 (85k:14004)
- 13.
- P. Gabriel, Unzerlegbare Darstellungen. I, Manuscripta Math. 6 (1972), 71-103; correction, ibid. 6 (1972), 309. MR 0332887 (48:11212)
- 14.
- M. É. Kazarian, Characteristic classes of singularity theory, The Arnold-Gelfand mathematical seminars: geometry and singularity theory (V. I. Arnold et al., eds.), 1997, pp. 325-340. MR 1429898 (97m:57037)
- 15.
- A. Knutson, E. Miller, and M. Shimozono, Four positive formulas for type quiver polynomials, preprint, 2003.
- 16.
- A. Lascoux and M.-P. Schützenberger, Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), 447-450. MR 0660739 (83e:14039)
- 17.
- -, Structure de Hopf de l'anneau de cohomologie et de l'anneau de Grothendieck d'une variété de drapeaux, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), 629-633. MR 0686357 (84b:14030)
- 18.
- E. Miller, Alternating formulae for -theoretic quiver polynomials, Duke Math. J. 128 (2005), no. 1, 1-17. MR 2137947 (2006e:05181)
- 19.
- C. M. Ringel, Representations of -species and bimodules, J. Algebra 41 (1976), 269-302. MR 0422350 (54:10340)
Additional Information
Anders Skovsted Buch
Affiliation:
Department of Mathematics, Rutgers University, 110 Frelinghuysen Road, Piscataway, New Jersey 08854
Email:
asbuch@math.rutgers.edu
Richárd Rimányi
Affiliation:
Department of Mathematics, The University of North Carolina at Chapel Hill, CB #3250, Phillips Hall, Chapel Hill, New Carolina 27599
Email:
rimanyi@email.unc.edu
DOI:
https://doi.org/10.1090/S1056-3911-07-00441-9
Received by editor(s):
October 10, 2005
Published electronically:
February 21, 2007
Additional Notes:
We thank the referee for several helpful suggestions to our exposition.