Rational surfaces in index-one Fano hypersurfaces
Authors:
Roya Beheshti and Jason Michael Starr
Journal:
J. Algebraic Geom. 17 (2008), 255-274
DOI:
https://doi.org/10.1090/S1056-3911-07-00459-6
Published electronically:
December 5, 2007
MathSciNet review:
2369086
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We give the first evidence for a conjecture that a general, index-one, Fano hypersurface is not unirational: (i) a general point of the hypersurface is contained in no rational surface ruled, roughly, by low-degree rational curves, and (ii) a general point is contained in no image of a Del Pezzo surface.
References
- Olivier Debarre, Higher-dimensional algebraic geometry, Universitext, Springer-Verlag, New York, 2001. MR 1841091
- F. Campana, Connexité rationnelle des variétés de Fano, Ann. Sci. École Norm. Sup. (4) 25 (1992), no. 5, 539–545 (French). MR 1191735
- A. J. de Jong and Jason Starr, Cubic fourfolds and spaces of rational curves, Illinois J. Math. 48 (2004), no. 2, 415–450. MR 2085418
- W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 45–96. MR 1492534, DOI https://doi.org/10.1090/pspum/062.2/1492534
- Phillip A. Griffiths, On the periods of certain rational integrals. I, II, Ann. of Math. (2) 90 (1969), 460-495; ibid. (2) 90 (1969), 496–541. MR 0260733, DOI https://doi.org/10.2307/1970746
- Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
- V. A. Iskovskih and Ju. I. Manin, Three-dimensional quartics and counterexamples to the Lüroth problem, Mat. Sb. (N.S.) 86(128) (1971), 140–166 (Russian). MR 0291172
- János Kollár, Which are the simplest algebraic varieties?, Bull. Amer. Math. Soc. (N.S.) 38 (2001), no. 4, 409–433. MR 1848255, DOI https://doi.org/10.1090/S0273-0979-01-00917-X
- János Kollár, Yoichi Miyaoka, and Shigefumi Mori, Rational connectedness and boundedness of Fano manifolds, J. Differential Geom. 36 (1992), no. 3, 765–779. MR 1189503
- Martin Olsson and Jason Starr, Quot functors for Deligne-Mumford stacks, Comm. Algebra 31 (2003), no. 8, 4069–4096. Special issue in honor of Steven L. Kleiman. MR 2007396, DOI https://doi.org/10.1081/AGB-120022454
References
- O. Debarre, Higher-dimensional algebraic geometry, Springer-Verlag, 2001. MR 1841091 (2002g:14001)
- F. Campana, Connexité rationnelle des variétés de Fano, Ann. Sci. École Norm. Sup. 25 (1992), 539–545. MR 1191735 (93k:14050)
- A. J. de Jong, J. Starr, Cubic fourfolds and spaces of rational curves, Illinois J. Math., 48 (2004), 415–450. MR 2085418 (2006e:14007)
- W. Fulton, R. Pandharipande, Notes on stable maps and quantum cohomology, Algebraic geometry—Santa Cruz 1995, 45–96, Proc. Sympos. Pure Math., 62, 1995. MR 1492534 (98m:14025)
- P. A. Griffiths, On the periods of certain rational integrals, I., Annals of Math., 90 (1969), 496–451. MR 0260733 (41:5357)
- R. Hartshorne, Algebraic Geometry, Springer-Verlag, 1977. MR 0463157 (57:3116)
- V. Iskovskih, J. Manin, Three-dimensional quartics and counterexamples to the Lüroth problem, Mat. Sb. (N.S.) 86 (1971), 140–166. MR 0291172 (45:266)
- J. Kollár, Which are the simplest algebraic varieties?, Bull. Amer. Math. Soc. (N.S.) 38 (2001), 409–433. MR 1848255 (2002f:14001)
- J. Kollár, Y. Miyaoka, S. Mori, Rational connectedness and boundedness of Fano manifolds, J. Diff. Geom. 36 (1992), 765–769. MR 1189503 (94g:14021)
- M. Olsson, J. Starr, Quot functors for Deligne-Mumford stacks, Comm. Algebra 31 (2003), 4069–4096. MR 2007396 (2004i:14002)
Additional Information
Roya Beheshti
Affiliation:
Department of Mathematics and Statistics, Queen’s University, Kingston, Ontario, Canada K7L 3N6
Address at time of publication:
Department of Mathematics, Washington University in St. Louis, St. Louis, Missouri 63130
MR Author ID:
774823
Email:
beheshti@mast.queensu.ca; beheshti@math.wustl.edu
Jason Michael Starr
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Address at time of publication:
Department of Mathematics, Stony Brook University, Stony Brook, New York 11794
Email:
jstarr@math.mit.edu; jstarr@math.sunysb.edu
Received by editor(s):
February 1, 2006
Received by editor(s) in revised form:
April 10, 2006, and May 30, 2006
Published electronically:
December 5, 2007
Additional Notes:
The second author is supported by NSF grant DMS-0353692 and a Sloan Research Fellowship