A finiteness theorem for the Brauer group of abelian varieties and $K3$ surfaces
Authors:
Alexei N. Skorobogatov and Yuri G. Zarhin
Journal:
J. Algebraic Geom. 17 (2008), 481-502
DOI:
https://doi.org/10.1090/S1056-3911-07-00471-7
Published electronically:
December 10, 2007
MathSciNet review:
2395136
Full-text PDF
Abstract |
References |
Additional Information
Abstract: Let $k$ be a field finitely generated over the field of rational numbers, and $\operatorname {Br}(k)$ the Brauer group of $k$. For an algebraic variety $X$ over $k$ we consider the cohomological Brauer–Grothendieck group $\operatorname {Br}(X)$. We prove that the quotient of $\operatorname {Br}(X)$ by the image of $\operatorname {Br}(k)$ is finite if $X$ is a $K3$ surface. When $X$ is an abelian variety over $k$, and $\overline {X}$ is the variety over an algebraic closure $\overline {k}$ of $k$ obtained from $X$ by the extension of the ground field, we prove that the image of $\operatorname {Br}(X)$ in $\operatorname {Br}(\overline {X})$ is finite.
References
- V. G. Berkovič, The Brauer group of abelian varieties, Funkcional Anal. i Priložen. 6 (1972), no. 3, 10–15 (Russian). MR 0308134
- J.-L. Colliot-Thélène, A. N. Skorobogatov, and Peter Swinnerton-Dyer, Hasse principle for pencils of curves of genus one whose Jacobians have rational $2$-division points, Invent. Math. 134 (1998), no. 3, 579–650. MR 1660925, DOI https://doi.org/10.1007/s002220050274
- Pierre Deligne, La conjecture de Weil pour les surfaces $K3$, Invent. Math. 15 (1972), 206–226 (French). MR 296076, DOI https://doi.org/10.1007/BF01404126
- Pierre Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273–307 (French). MR 340258
- Pierre Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137–252 (French). MR 601520
- P. Deligne (notes by J. Milne), Hodge cycles on abelian varieties. In: Hodge cycles, motives and Shimura varieties. Springer Lecture Notes in Math. 900 (1982), 9–100.
- Pierre Deligne, James S. Milne, Arthur Ogus, and Kuang-yen Shih, Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, vol. 900, Springer-Verlag, Berlin-New York, 1982. MR 654325
- G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), no. 3, 349–366 (German). MR 718935, DOI https://doi.org/10.1007/BF01388432
- Gerd Faltings, Gisbert Wüstholz, Fritz Grunewald, Norbert Schappacher, and Ulrich Stuhler, Rational points, 2nd ed., Aspects of Mathematics, E6, Friedr. Vieweg & Sohn, Braunschweig, 1986. Papers from the seminar held at the Max-Planck-Institut für Mathematik, Bonn/Wuppertal, 1983/1984. MR 863887
- Ofer Gabber, Sur la torsion dans la cohomologie $l$-adique d’une variété, C. R. Acad. Sci. Paris Sér. I Math. 297 (1983), no. 3, 179–182 (French, with English summary). MR 725400
- Alexander Grothendieck, Le groupe de Brauer. I. Algèbres d’Azumaya et interprétations diverses, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., vol. 3, North-Holland, Amsterdam, 1968, pp. 46–66 (French). MR 244269
- David Harari, Obstructions de Manin transcendantes, Number theory (Paris, 1993–1994) London Math. Soc. Lecture Note Ser., vol. 235, Cambridge Univ. Press, Cambridge, 1996, pp. 75–87 (French). MR 1628794, DOI https://doi.org/10.1017/CBO9780511662003.004
- J. P. Jouanolou, Cohomologie de quelques schémas classiques et théorie cohomologique des classes de Chern. Exposé VII. SGA 5, Cohomologie $\ell$-adique et fonctions $L$ (dirigé par A. Grothendieck). Springer Lecture Notes in Math. 589 (1977).
- Steven L. Kleiman, The standard conjectures, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 3–20. MR 1265519, DOI https://doi.org/10.1090/pspum/055.1/1265519
- Steven L. Kleiman, The Picard scheme, Fundamental algebraic geometry, Math. Surveys Monogr., vol. 123, Amer. Math. Soc., Providence, RI, 2005, pp. 235–321. MR 2223410, DOI https://doi.org/10.1016/j.aim.2005.06.006
- Serge Lang, Abelian varieties, Springer-Verlag, New York-Berlin, 1983. Reprint of the 1959 original. MR 713430
- Y. I. Manin, Le groupe de Brauer-Grothendieck en géométrie diophantienne, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 401–411. MR 0427322
- J. S. Milne, On a conjecture of Artin and Tate, Ann. of Math. (2) 102 (1975), no. 3, 517–533. MR 414558, DOI https://doi.org/10.2307/1971042
- James S. Milne, Étale cohomology, Princeton Mathematical Series, No. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531
- J. S. Milne, Abelian varieties, Arithmetic geometry (Storrs, Conn., 1984) Springer, New York, 1986, pp. 103–150. MR 861974
- David Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, No. 5, Published for the Tata Institute of Fundamental Research, Bombay; Oxford University Press, London, 1970. MR 0282985
- I. I. Pjateckiĭ-Šapiro and I. R. Šafarevič, The arithmetic of surfaces of type ${\rm K}3$, Proceedings of the International Conference on Number Theory (Moscow, 1971), 1973, pp. 44–54, 264 (Russian). MR 0335521
- Wayne Raskind and Victor Scharaschkin, Descent on simply connected surfaces over algebraic number fields, Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002) Progr. Math., vol. 226, Birkhäuser Boston, Boston, MA, 2004, pp. 185–204. MR 2029870, DOI https://doi.org/10.1007/978-0-8176-8170-8_12
- Jean-Pierre Serre, Lie algebras and Lie groups, 2nd ed., Lecture Notes in Mathematics, vol. 1500, Springer-Verlag, Berlin, 1992. 1964 lectures given at Harvard University. MR 1176100
- J.-P. Serre, Sur les groupes de Galois attachés aux groupes $p$-divisibles, Proc. Conf. Local Fields (Driebergen, 1966) Springer, Berlin, 1967, pp. 118–131 (French). MR 0242839
- A.N. Skorobogatov, On the elementary obstruction to the existence of rational points. Mat. Zametki 81 (2007), 112–124. (Russian) Mathematical Notes 81 (2007), 97–107.
- Alexei Skorobogatov and Peter Swinnerton-Dyer, 2-descent on elliptic curves and rational points on certain Kummer surfaces, Adv. Math. 198 (2005), no. 2, 448–483. MR 2183385, DOI https://doi.org/10.1016/j.aim.2005.06.005
- Peter Swinnerton-Dyer, Arithmetic of diagonal quartic surfaces. II, Proc. London Math. Soc. (3) 80 (2000), no. 3, 513–544. MR 1744774, DOI https://doi.org/10.1112/S0024611500012302
- S. G. Tankeev, On the Brauer group of an arithmetic scheme. II, Izv. Ross. Akad. Nauk Ser. Mat. 67 (2003), no. 5, 155–176 (Russian, with Russian summary); English transl., Izv. Math. 67 (2003), no. 5, 1007–1029. MR 2018744, DOI https://doi.org/10.1070/IM2003v067n05ABEH000455
- John T. Tate, Algebraic cycles and poles of zeta functions, Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963) Harper & Row, New York, 1965, pp. 93–110. MR 0225778
- J. Tate, On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, Séminaire Bourbaki 306 (1965/1966); In: Dix exposés sur la cohomologie des schémas (A. Grothendieck, N.H. Kuiper, eds.), North-Holland, 1968, 189–214.
- John Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134–144. MR 206004, DOI https://doi.org/10.1007/BF01404549
- John Tate, Relations between $K_{2}$ and Galois cohomology, Invent. Math. 36 (1976), 257–274. MR 429837, DOI https://doi.org/10.1007/BF01390012
- John Tate, Conjectures on algebraic cycles in $l$-adic cohomology, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 71–83. MR 1265523, DOI https://doi.org/10.1090/pspum/055.1/1265523
- R. O. Wells Jr., Differential analysis on complex manifolds, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973. Prentice-Hall Series in Modern Analysis. MR 0515872
- Olivier Wittenberg, Transcendental Brauer-Manin obstruction on a pencil of elliptic curves, Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002) Progr. Math., vol. 226, Birkhäuser Boston, Boston, MA, 2004, pp. 259–267. MR 2029873, DOI https://doi.org/10.1007/978-0-8176-8170-8_15
- Ju. G. Zarhin, Endomorphisms of Abelian varieties over fields of finite characteristic, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 2, 272–277, 471 (Russian). MR 0371897
- Ju. G. Zarhin, Abelian varieties in characteristic $p$, Mat. Zametki 19 (1976), no. 3, 393–400 (Russian). MR 422287
- Ju. G. Zarhin, Endomorphisms of abelian varieties and points of finite order in characteristic $P$, Mat. Zametki 21 (1977), no. 6, 737–744 (Russian). MR 485893
- Yu. G. Zarkhin, The Brauer group of an abelian variety over a finite field, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 2, 211–243, 431 (Russian). MR 651646
- Yu. G. Zarhin, A finiteness theorem for unpolarized abelian varieties over number fields with prescribed places of bad reduction, Invent. Math. 79 (1985), no. 2, 309–321. MR 778130, DOI https://doi.org/10.1007/BF01388976
References
- V.G. Berkovich, The Brauer group of abelian varieties. Funktsional. Anal. i Prilozhen. 6 (1972), no. 3, 10–15; Functional Anal. Appl. 6 (1972), no. 3, 180–184. MR 0308134 (46:7249)
- J.-L. Colliot-Thélène, A.N. Skorobogatov and Sir Peter Swinnerton-Dyer, Hasse principle for pencils of curves of genus one whose Jacobians have rational $2$-division points. Invent. Math. 134 (1998), 579–650. MR 1660925 (99k:11095)
- P. Deligne, La conjecture de Weil pour les surfaces K$3$. Invent. Math. 15 (1972), 206–226. MR 0296076 (45:5137)
- P. Deligne, La conjecture de Weil. I. Publ. Math. IHES 43 (1974), 273–307. MR 0340258 (49:5013)
- P. Deligne, La conjecture de Weil. II. Publ. Math. IHES 52 (1980), 137–252. MR 601520 (83c:14017)
- P. Deligne (notes by J. Milne), Hodge cycles on abelian varieties. In: Hodge cycles, motives and Shimura varieties. Springer Lecture Notes in Math. 900 (1982), 9–100.
- P. Deligne, J. Milne, Tannakian categories. In: Hodge cycles, motives and Shimura varieties. Springer Lecture Notes in Math. 900 (1982), 101–228. MR 654325 (84m:14046)
- G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73 (1983), 349–366; Erratum 75 (1984), 381. MR 718935 (85g:11026a)
- G. Faltings, Complements to Mordell. In: G. Faltings, G. Wüstholz et al., Rational points, 2nd edition, F. Viehweg & Sohn, 1986. MR 863887 (87m:11025)
- O. Gabber, Sur la torsion dans la cohomologie $\ell$-adique d’une variété. C. R. Acad. Sci. Paris Sér. I Math. 297 (1983), no. 3, 179–182. MR 725400 (85f:14018)
- A. Grothendieck, Le groupe de Brauer. I, II, III. In: Dix exposés sur la cohomologie des schémas (A. Grothendieck, N.H. Kuiper, eds.), North-Holland, 1968, 46–188; available at www.grothendieckcircle.org . MR 0244269 (39:5586a)
- D. Harari, Obstructions de Manin transcendantes. In: Number theory (Paris, 1993–1994), LMS Lecture Note Ser. 235 Cambridge Univ. Press, 1996, 75–87. MR 1628794 (99e:14025)
- J. P. Jouanolou, Cohomologie de quelques schémas classiques et théorie cohomologique des classes de Chern. Exposé VII. SGA 5, Cohomologie $\ell$-adique et fonctions $L$ (dirigé par A. Grothendieck). Springer Lecture Notes in Math. 589 (1977).
- S. Kleiman, The standard conjectures. In: Motives (U. Jannsen, S. Kleiman, J.-P. Serre, eds.). Proc. Symp. Pure Math. 55, Part 1 (1991), 3–20. Amer. Math. Soc., Providence, RI. MR 1265519 (95k:14010)
- S. Kleiman, The Picard scheme. In: Fundamental algebraic geometry (Grothendieck’s FGA explained). Mathematical Surveys and Monographs vol. 123 (2005), Amer. Math. Soc., Providence, RI; arXiv math.AG/0504020. MR 2223410
- S. Lang, Abelian varieties, 2nd edition. Springer-Verlag, 1983. MR 713430 (84g:14041)
- Yu.I. Manin, Le groupe de Brauer–Grothendieck en géométrie diophantienne. In: Actes Congrès Internat. Math. Nice I (Gauthier-Villars, 1971), 401–411. MR 0427322 (55:356)
- J.S. Milne, On a conjecture of Artin and Tate. Ann. Math. 102 (1975), 517–533. MR 0414558 (54:2659)
- J.S. Milne, Étale cohomology. Princeton University Press, Princeton, NJ, 1980. MR 559531 (81j:14002)
- J.S. Milne, Abelian varieties. In: Arithmetic geometry (G. Cornell, J.H. Silverman, eds.). Springer-Verlag, 1986. MR 861974
- D. Mumford, Abelian varieties, 2nd edition. Oxford University Press, London, 1974. MR 0282985 (44:219)
- I.I. Piatetski-Shapiro, I.R. Shafarevich, The arithmetic of surfaces of type K3. Trudy Mat. Inst. Steklov. 132 (1973), 44–54; Proc. Steklov Institute of Mathematics, 132 (1975), 45–57. MR 0335521 (49:302)
- W. Raskind and V. Scharaschkin, Descent on simply connected surfaces over algebraic number fields. In: Arithmetic of higher-dimensional algebraic varieties (Palo Alto, 2002), B. Poonen, Yu. Tschinkel, eds. Progr. Math. 226, Birkhäuser, 2004, 185–204. MR 2029870 (2005h:11133)
- J.-P. Serre, Lie Algebras and Lie Groups. Springer Lecture Notes in Math. 1500 (1992). MR 1176100 (93h:17001)
- J.-P. Serre, Sur les groupes de Galois attachés aux groupes p-divisibles. In: Proc. conf. on local fields (Driebergen, 1966), Springer-Verlag, Berlin, 1967, 118–131. MR 0242839 (39:4166)
- A.N. Skorobogatov, On the elementary obstruction to the existence of rational points. Mat. Zametki 81 (2007), 112–124. (Russian) Mathematical Notes 81 (2007), 97–107.
- A. Skorobogatov and P. Swinnerton-Dyer, 2-descent on elliptic curves and rational points on certain Kummer surfaces. Adv. Math. 198 (2005), 448–483. MR 2183385 (2006g:11129)
- P. Swinnerton-Dyer, Arithmetic of diagonal quartic surfaces, II. Proc. London Math. Soc. 80 (2000), 513–544. MR 1744774 (2001d:11069)
- S.G. Tankeev, On the Brauer group of an arithmetic scheme. II. Izv. Ross. Akad. Nauk Ser. Mat. 67 (2003), 155–176; Izv. Math. 67 (2003), 1007–1029. MR 2018744 (2005a:14023)
- J. Tate, Algebraic cycles and poles of zeta functions. In: Arithmetical algebraic geometry, Harper and Row, New York, 1965, 93–110. MR 0225778 (37:1371)
- J. Tate, On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, Séminaire Bourbaki 306 (1965/1966); In: Dix exposés sur la cohomologie des schémas (A. Grothendieck, N.H. Kuiper, eds.), North-Holland, 1968, 189–214.
- J. Tate, Endomorphisms of abelian varieties over finite fields. Invent. Math. 2 (1966), 134–144. MR 0206004 (34:5829)
- J. Tate, Relations between $K_2$ and Galois cohomology. Invent. Math. 36 (1976), 257–274. MR 0429837 (55:2847)
- J. Tate, Conjectures on algebraic cycles in $\ell$-adic cohomology. In: Motives (U. Jannsen, S. Kleiman, J.-P. Serre, eds.). Proc. Symp. Pure Math. 55, Part 1 (1991), 71–83. Amer. Math. Soc., Providence, RI. MR 1265523 (95a:14010)
- R.O. Wells, Differential analysis on complex manifolds. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1973. MR 0515872 (58:24309a)
- O. Wittenberg, Transcendental Brauer–Manin obstruction on a pencil of elliptic curves. In: Arithmetic of higher-dimensional algebraic varieties (Palo Alto, 2002), B. Poonen, Yu. Tschinkel, eds. Progr. Math. 226, Birkhäuser, 2004, 259–267. MR 2029873 (2005c:11082)
- Yu.G. Zarhin, Endomorphisms of Abelian varieties over fields of finite characteristic. Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), 272–277; Math. USSR Izv. 9 (1975), 255–260. MR 0371897 (51:8114)
- Yu.G. Zarhin, Abelian varieties in characteristic $p$. Mat. Zametki 19 (1976), 393–400; Math. Notes 19 (1976), 240–244. MR 0422287 (54:10278)
- Yu.G. Zarhin, Endomorphisms of abelian varieties and points of finite order in characteristic $p$. Mat. Zametki 21 (1977), 737–744; Math. Notes 21 (1977), 415–419. MR 0485893 (58:5692)
- Yu.G. Zarhin, The Brauer group of an abelian variety over a finite field. Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), 211–243; Math. USSR Izvestia 20 (1983), 203–234. MR 651646 (83h:14035)
- Yu.G. Zarhin, A finiteness theorem for unpolarized abelian varieties over number fields with prescribed places of bad reduction. Invent. Math. 79 (1985), 309–321. MR 778130 (86d:14041)
Additional Information
Alexei N. Skorobogatov
Affiliation:
Department of Mathematics, South Kensington Campus, Imperial College, London, SW7 2BZ England, United Kingdom;
Institute for the Information Transmission Problems, Russian Academy of Sciences, 19 Bolshoi Karetnyi, Moscow, 127994 Russia
MR Author ID:
218233
Email:
a.skorobogatov@imperial.ac.uk
Yuri G. Zarhin
Affiliation:
Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802;
Institute for Mathematical Problems in Biology, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
MR Author ID:
200326
Email:
zarhin@math.psu.edu
Received by editor(s):
May 13, 2006
Received by editor(s) in revised form:
October 12, 2006
Published electronically:
December 10, 2007