Chern classes of Schubert cells and varieties
Authors:
Paolo Aluffi and Leonardo Constantin Mihalcea
Journal:
J. Algebraic Geom. 18 (2009), 63-100
DOI:
https://doi.org/10.1090/S1056-3911-08-00482-7
Published electronically:
March 17, 2008
MathSciNet review:
2448279
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We give explicit formulas for the Chern-Schwartz-MacPherson classes of all Schubert varieties in the Grassmannian of $d$-planes in a vector space, and conjecture that these classes are effective. We prove this is the case for $d\le 2$.
References
- Paolo Aluffi, Differential forms with logarithmic poles and Chern-Schwartz-MacPherson classes of singular varieties, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), no. 7, 619–624 (English, with English and French summaries). MR 1717120, DOI https://doi.org/10.1016/S0764-4442%2800%2980012-9
- Paolo Aluffi, Classes de Chern des variétés singulières, revisitées, C. R. Math. Acad. Sci. Paris 342 (2006), no. 6, 405–410 (French, with English and French summaries). MR 2209219, DOI https://doi.org/10.1016/j.crma.2006.01.002
- Paolo Aluffi, Limits of Chow groups, and a new construction of Chern-Schwartz-MacPherson classes, Pure Appl. Math. Q. 2 (2006), no. 4, Special Issue: In honor of Robert D. MacPherson., 915–941. MR 2282409, DOI https://doi.org/10.4310/PAMQ.2006.v2.n4.a2
- Michel Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. (4) 7 (1974), 53–88 (French). MR 354697
- William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620
- Mark Goresky and William Pardon, Chern classes of automorphic vector bundles, Invent. Math. 147 (2002), no. 3, 561–612. MR 1893006, DOI https://doi.org/10.1007/s002220100184
- C. Krattenthaler, Advanced determinant calculus, Sém. Lothar. Combin. 42 (1999), Art. B42q, 67. The Andrews Festschrift (Maratea, 1998). MR 1701596
- C. Krattenthaler, Advanced determinant calculus: a complement, Linear Algebra Appl. 411 (2005), 68–166. MR 2178686, DOI https://doi.org/10.1016/j.laa.2005.06.042
- R. D. MacPherson, Chern classes for singular algebraic varieties, Ann. of Math. (2) 100 (1974), 423–432. MR 361141, DOI https://doi.org/10.2307/1971080
- Leonardo Constantin Mihalcea, Sums of binomial determinants, non-intersecting lattice paths and positivity of Chern-Schwartz-MacPherson classes, arXiv:math.CO/ 0702566.
- Adam Parusiński and Piotr Pragacz, Chern-Schwartz-MacPherson classes and the Euler characteristic of degeneracy loci and special divisors, J. Amer. Math. Soc. 8 (1995), no. 4, 793–817. MR 1311826, DOI https://doi.org/10.1090/S0894-0347-1995-1311826-0
- Marie-Hélène Schwartz, Classes caractéristiques définies par une stratification d’une variété analytique complexe. I, C. R. Acad. Sci. Paris 260 (1965), 3262–3264 (French). MR 212842
- Marie-Hélène Schwartz, Classes caractéristiques définies par une stratification d’une variété analytique complexe, C. R. Acad. Sci. Paris 260 (1965), 3535–3537 (French). MR 184254
- Ravi Vakil, A geometric Littlewood-Richardson rule, Ann. of Math. (2) 164 (2006), no. 2, 371–421. Appendix A written with A. Knutson. MR 2247964, DOI https://doi.org/10.4007/annals.2006.164.371
References
- Paolo Aluffi, Differential forms with logarithmic poles and Chern-Schwartz-MacPherson classes of singular varieties, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), no. 7, 619–624. MR 1717120 (2001d:14008)
- ---, Classes de Chern des variétés singulières, revisitées, C. R. Math. Acad. Sci. Paris 342 (2006), no. 6, 405–410. MR 2209219
- ---, Limits of Chow groups, and a new construction of Chern-Schwartz-MacPherson classes, Pure Appl. Math. Q. 2 (2006), no. 4, 915–941, Robert MacPherson special issue, Part II. MR 2282409
- Michel Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. (4) 7 (1974), 53–88, Collection of articles dedicated to Henri Cartan on the occasion of his 70th birthday, I. MR 0354697 (50:7174)
- William Fulton, Intersection theory, Springer-Verlag, Berlin, 1984. MR 732620 (85k:14004)
- Mark Goresky and William Pardon, Chern classes of automorphic vector bundles, Invent. Math. 147 (2002), no. 3, 561–612. MR 1893006 (2003g:32047)
- Christian Krattenthaler, Advanced determinant calculus, Sém. Lothar. Combin. 42 (1999), Art. B42q, 67 pp., The Andrews Festschrift (Maratea, 1998). MR 1701596 (2002i:05013)
- ---, Advanced determinant calculus: A complement, Linear Algebra Appl. 411 (2005), 68–166. MR 2178686 (2006g:05022)
- Robert D. MacPherson, Chern classes for singular algebraic varieties, Ann. of Math. (2) 100 (1974), 423–432. MR 0361141 (50:13587)
- Leonardo Constantin Mihalcea, Sums of binomial determinants, non-intersecting lattice paths and positivity of Chern-Schwartz-MacPherson classes, arXiv:math.CO/ 0702566.
- Adam Parusiński and Piotr Pragacz, Chern-Schwartz-MacPherson classes and the Euler characteristic of degeneracy loci and special divisors, J. Amer. Math. Soc. 8 (1995), no. 4, 793–817. MR 1311826 (96h:14001)
- Marie-Hélène Schwartz, Classes caractéristiques définies par une stratification d’une variété analytique complexe. I, C. R. Acad. Sci. Paris 260 (1965), 3262–3264. MR 0212842 (35:3707)
- ---, Classes caractéristiques définies par une stratification d’une variété analytique complexe. II, C. R. Acad. Sci. Paris 260 (1965), 3535–3537. MR 0184254 (32:1727)
- Ravi Vakil, A geometric Littlewood-Richardson rule, Ann. of Math. (2) 164 (2006), no. 2, 371–421, Appendix A written with A. Knutson. MR 2247964 (2007f:05184)
Additional Information
Paolo Aluffi
Affiliation:
Department of Mathematics, Florida State University, Tallahassee, Florida 32306
MR Author ID:
265422
Email:
aluffi@math.fsu.edu
Leonardo Constantin Mihalcea
Affiliation:
Department of Mathematics, Florida State University, Tallahassee, Florida 32306
Address at time of publication:
Department of Mathematics, Duke University, Durham, North Carolina 27708-0320
Email:
lmihalce@math.duke.edu
Received by editor(s):
October 7, 2006
Received by editor(s) in revised form:
March 2, 2007
Published electronically:
March 17, 2008