Pointed trees of projective spaces
Authors:
L. Chen, A. Gibney and D. Krashen
Journal:
J. Algebraic Geom. 18 (2009), 477-509
DOI:
https://doi.org/10.1090/S1056-3911-08-00494-3
Published electronically:
November 19, 2008
MathSciNet review:
2496455
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We introduce a smooth projective variety $T_{d,n}$ which compactifies the space of configurations of $n$ distinct points on affine $d$-space modulo translation and homothety. The points in the boundary correspond to $n$-pointed stable rooted trees of $d$-dimensional projective spaces, which for $d = 1$, are $(n+1)$-pointed stable rational curves. In particular, $T_{1,n}$ is isomorphic to $\overline {M}_{0,n+1}$, the moduli space of such curves. The variety $T_{d,n}$ shares many properties with $\overline {M}_{0,n+1}$. For example, as we prove, the boundary is a smooth normal crossings divisor whose components are products of $T_{d,i}$ for $i < n$, and it has an inductive construction analogous to but differing from Keel’s for $\overline {M}_{0,n+1}$. This can be used to describe its Chow groups and Chow motive generalizing [Trans. Amer. Math. Soc. 330 (1992), 545–574]. It also allows us to compute its Poincaré polynomials, giving an alternative to the description implicit in [Progr. Math., vol. 129, Birkhäuser, 1995, pp. 401–417]. We give a presentation of the Chow rings of $T_{d,n}$, exhibit explicit dual bases for the dimension $1$ and codimension $1$ cycles. The variety $T_{d,n}$ is embedded in the Fulton-MacPherson spaces $X[n]$ for any smooth variety $X$, and we use this connection in a number of ways. In particular we give a family of ample divisors on $T_{d,n}$, and an inductive presentation of the Chow motive of $X[n]$. This also gives an inductive presentation of the Chow groups of $X[n]$ analogous to Keel’s presentation for $\overline {M}_{0,n+1}$, solving a problem posed by Fulton and MacPherson.
References
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960
- W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology.
- William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 99d:14003
- William Fulton and Robert MacPherson, A compactification of configuration spaces, Ann. of Math. (2) 139 (1994), no. 1, 183–225. MR 1259368, DOI https://doi.org/10.2307/2946631
- Angela Gibney, Sean Keel, and Ian Morrison, Towards the ample cone of $\overline M_{g,n}$, J. Amer. Math. Soc. 15 (2002), no. 2, 273–294. MR 1887636, DOI https://doi.org/10.1090/S0894-0347-01-00384-8
- Paul Hacking, Sean Keel, and Jenia Tevelev, Compactification of the moduli space of hyperplane arrangements, J. Algebraic Geom. 15 (2006), no. 4, 657–680. MR 2237265, DOI https://doi.org/10.1090/S1056-3911-06-00445-0
- Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977, Graduate Texts in Mathematics, No. 52. MR 57:3116
- M. M. Kapranov, Chow quotients of Grassmannians. I, I. M. Gel′fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 29–110. MR 1237834
- M. M. Kapranov, Veronese curves and Grothendieck-Knudsen moduli space $\overline M_{0,n}$, J. Algebraic Geom. 2 (1993), no. 2, 239–262. MR 1203685
- Ralph Kaufmann, The intersection form in ${\scr H}^*(\overline {\scr M}_{0n})$ and the explicit Künneth formula in quantum cohomology, Internat. Math. Res. Notices 19 (1996), 929–952. MR 1422369, DOI https://doi.org/10.1155/S107379289600058X
- Sean Keel, Intersection theory of moduli space of stable $n$-pointed curves of genus zero, Trans. Amer. Math. Soc. 330 (1992), no. 2, 545–574. MR 1034665, DOI https://doi.org/10.1090/S0002-9947-1992-1034665-0
- Sean Keel and Jenia Tevelev, Geometry of Chow quotients of Grassmannians, Duke Math. J. 134 (2006), no. 2, 259–311. MR 2248832, DOI https://doi.org/10.1215/S0012-7094-06-13422-1
- Li Li, Chow Motive of Fulton-MacPherson configuration spaces and wonderful compactifications, arXiv:math.AG/0611459.
- Ju. I. Manin, Correspondences, motifs and monoidal transformations, Mat. Sb. (N.S.) 77 (119) (1968), 475–507 (Russian). MR 0258836
- Yu. I. Manin, Generating functions in algebraic geometry and sums over trees, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 401–417. MR 1363064, DOI https://doi.org/10.1007/978-1-4612-4264-2_14
- Andrei Mustaţă and Magdalena Anca Mustaţă, Intermediate moduli spaces of stable maps, Invent. Math. 167 (2007), no. 1, 47–90. MR 2264804, DOI https://doi.org/10.1007/s00222-006-0006-1
- Dragos Oprea, Divisors on the moduli spaces of stable maps to flag varieties and reconstruction, J. Reine Angew. Math. 586 (2005), 169–205. MR 2180604, DOI https://doi.org/10.1515/crll.2005.2005.586.169
- Dragos Oprea, Tautological classes on the moduli spaces of stable maps to $\Bbb P^r$ via torus actions, Adv. Math. 207 (2006), no. 2, 661–690. MR 2271022, DOI https://doi.org/10.1016/j.aim.2006.01.002
- Dragos Oprea, The tautological rings of the moduli spaces of stable maps to flag varieties, J. Algebraic Geom. 15 (2006), no. 4, 623–655. MR 2237264, DOI https://doi.org/10.1090/S1056-3911-06-00452-8
- Rahul Pandharipande, Intersections of $\mathbf Q$-divisors on Kontsevich’s moduli space $\overline M_{0,n}(\mathbf P^r,d)$ and enumerative geometry, Trans. Amer. Math. Soc. 351 (1999), no. 4, 1481–1505. MR 1407707, DOI https://doi.org/10.1090/S0002-9947-99-01909-1
References
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. MR 1322960 (97a:13001)
- W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology.
- William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 99d:14003
- William Fulton and Robert MacPherson, A compactification of configuration spaces, Ann. of Math. (2) 139 (1994), no. 1, 183–225. MR 1259368 (95j:14002)
- Angela Gibney, Sean Keel, and Ian Morrison, Towards the ample cone of $\overline M_ {g,n}$, J. Amer. Math. Soc. 15 (2002), no. 2, 273–294 (electronic). MR 1887636 (2003c:14029)
- Paul Hacking, Sean Keel, and Jenia Tevelev, Compactification of the moduli space of hyperplane arrangements, J. Algebraic Geom. 15 (2006), no. 4, 657–680. MR 2237265
- Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977, Graduate Texts in Mathematics, No. 52. MR 57:3116
- M. M. Kapranov, Chow quotients of Grassmannians. I, I. M. Gel$’$fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 29–110. MR 1237834 (95g:14053)
- ---, Veronese curves and Grothendieck-Knudsen moduli space $\overline M_ {0,n}$, J. Algebraic Geom. 2 (1993), no. 2, 239–262. MR 1203685 (94a:14024)
- Ralph Kaufmann, The intersection form in ${H}^*(\overline {M}_{0n})$ and the explicit Künneth formula in quantum cohomology, Internat. Math. Res. Notices (1996), no. 19, 929–952. MR 1422369 (98c:14006)
- Sean Keel, Intersection theory of moduli space of stable $n$-pointed curves of genus zero, Trans. Amer. Math. Soc. 330 (1992), no. 2, 545–574. MR 1034665 (92f:14003)
- Sean Keel and Jenia Tevelev, Geometry of Chow quotients of Grassmannians, Duke Math. J. 134 (2006), no. 2, 259–311. MR 2248832
- Li Li, Chow Motive of Fulton-MacPherson configuration spaces and wonderful compactifications, arXiv:math.AG/0611459.
- Ju. I. Manin, Correspondences, motifs and monoidal transformations, Mat. Sb. (N.S.) 77 (119) (1968), 475–507. MR 0258836 (41:3482)
- Yu. I. Manin, Generating functions in algebraic geometry and sums over trees, The moduli space of curves (Texel Island, 1994), Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 401–417. MR 1363064 (97e:14065)
- Andrei Mustaţă and Magdalena Anca Mustaţă, Intermediate moduli spaces of stable maps, Invent. Math. 167 (2007), no. 1, 47–90. MR 2264804
- Dragos Oprea, Divisors on the moduli spaces of stable maps to flag varieties and reconstruction, J. Reine Angew. Math. 586 (2005), 169–205. MR 2180604 (2006k:14062)
- ---, Tautological classes on the moduli spaces of stable maps to $\mathbb {P}^ r$ via torus actions, Adv. Math. 207 (2006), no. 2, 661–690. MR 2271022
- ---, The tautological rings of the moduli spaces of stable maps to flag varieties, J. Algebraic Geom. 15 (2006), no. 4, 623–655. MR 2237264
- Rahul Pandharipande, Intersections of $\mathbf {Q}$-divisors on Kontsevich’s moduli space $\overline M_ {0,n}(\mathbf {P}^ r,d)$ and enumerative geometry, Trans. Amer. Math. Soc. 351 (1999), no. 4, 1481–1505. MR 1407707 (99f:14068)
Additional Information
L. Chen
Affiliation:
Department of Mathematics, Ohio State University, Columbus, Ohio 43210
Address at time of publication:
Department of Mathematics and Statistics, Swarthmore College, 500 College Avenue, Swarthmore, Pennsylvania 19081
Email:
lchen@math.ohio-state.edu, lchen@swarthmore.edu
A. Gibney
Affiliation:
Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
Address at time of publication:
Department of Mathematics, University of Georgia, Athens, Georgia 30602
MR Author ID:
689485
Email:
agibney@math.upenn.edu
D. Krashen
Affiliation:
Department of Mathematics, Yale University, New Haven, Connecticut
Address at time of publication:
Department of Mathematics, University of Georgia, Athens, Georgia 30602
MR Author ID:
728218
ORCID:
0000-0001-6826-9901
Email:
daniel.krashen@yale.edu, dkrashen@math.uga.edu
Received by editor(s):
March 1, 2007
Received by editor(s) in revised form:
June 12, 2007
Published electronically:
November 19, 2008
Additional Notes:
The authors were supported during this work by the National Science Foundation under agreements DMS-0432701, DMS-0509319, and DMS-0111298, respectively.