The Multiplicity Polar Theorem and isolated singularities
Author:
Terence Gaffney
Journal:
J. Algebraic Geom. 18 (2009), 547-574
DOI:
https://doi.org/10.1090/S1056-3911-08-00516-X
Published electronically:
November 17, 2008
MathSciNet review:
2496457
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We show how the Multiplicity Polar Theorem can be used to calculate invariants which describe an “isolated singularity”. Examples include the defect of a function, which is related to the Euler obstruction, the index of a differential form, the dimension of the space of vanishing cycles of a sheaf of D-modules $M$ relative to a function $f$ at $0$, and a formula for the relative cohomology of the Milnor fiber of $f$ where $f$ has an isolated singularity on a complex analytic set with possibly non-isolated singularities. We apply the result on the defect to refine previous work on the $\mathrm {A}_f$ condition.
References
- Jean-Paul Brasselet, Existence des classes de Chern en théorie bivariante, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 7–22 (French). MR 737926
- J.-P. Brasselet, Lê Dũng Tráng, and J. Seade, Euler obstruction and indices of vector fields, Topology 39 (2000), no. 6, 1193–1208. MR 1783853, DOI https://doi.org/10.1016/S0040-9383%2899%2900009-9
- J.-P. Brasselet, D. Massey, A. J. Parameswaran, and J. Seade, Euler obstruction and defects of functions on singular varieties, J. London Math. Soc. (2) 70 (2004), no. 1, 59–76. MR 2064752, DOI https://doi.org/10.1112/S0024610704005447
- J.-P. Brasselet and M.H. Schwartz, Sur les classes de Chern des ensembles analytiques complexes, Astérisque, vol. 82-83, 1981.
- Winfried Bruns and Udo Vetter, Determinantal rings, Lecture Notes in Mathematics, vol. 1327, Springer-Verlag, Berlin, 1988. MR 953963
- David A. Buchsbaum and Dock S. Rim, A generalized Koszul complex. II. Depth and multiplicity, Trans. Amer. Math. Soc. 111 (1964), 197–224. MR 159860, DOI https://doi.org/10.1090/S0002-9947-1964-0159860-7
- W. Ebeling and S. M. Gusein-Zade, On the index of a vector field at an isolated singularity, The Arnoldfest (Toronto, ON, 1997) Fields Inst. Commun., vol. 24, Amer. Math. Soc., Providence, RI, 1999, pp. 141–152. MR 1733572
- S. M. Guseĭn-Zade and V. Èbeling, On the index of a holomorphic $1$-form on an isolated complete intersection singularity, Dokl. Akad. Nauk 380 (2001), no. 4, 458–461 (Russian). MR 1875501
- W. Ebeling and S. M. Gusein-Zade, Indices of 1-forms on an isolated complete intersection singularity, Mosc. Math. J. 3 (2003), no. 2, 439–455, 742–743 (English, with English and Russian summaries). Dedicated to Vladimir I. Arnold on the occasion of his 65th birthday. MR 2025268, DOI https://doi.org/10.17323/1609-4514-2003-3-2-439-455
- W. Ebeling, S. M. Gusein-Zade, and J. Seade, Homological index for 1-forms and a Milnor number for isolated singularities, Internat. J. Math. 15 (2004), no. 9, 895–905. MR 2106152, DOI https://doi.org/10.1142/S0129167X04002624
- William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620
- Terence Gaffney, Aureoles and integral closure of modules, Stratifications, singularities and differential equations, II (Marseille, 1990; Honolulu, HI, 1990) Travaux en Cours, vol. 55, Hermann, Paris, 1997, pp. 55–62. MR 1473241
- Terence Gaffney, Polar multiplicities and equisingularity of map germs, Topology 32 (1993), no. 1, 185–223. MR 1204414, DOI https://doi.org/10.1016/0040-9383%2893%2990045-W
- Terence Gaffney, Integral closure of modules and Whitney equisingularity, Invent. Math. 107 (1992), no. 2, 301–322. MR 1144426, DOI https://doi.org/10.1007/BF01231892
- Terence Gaffney and Maria Aparecida Soares Ruas (eds.), Real and complex singularities, Contemporary Mathematics, vol. 354, American Mathematical Society, Providence, RI, 2004. MR 2088465
- Terence Gaffney, Multiplicities and equisingularity of ICIS germs, Invent. Math. 123 (1996), no. 2, 209–220. MR 1374196, DOI https://doi.org/10.1007/s002220050022
- Terence Gaffney, Generalized Buchsbaum-Rim multiplcities and a theorem of Rees, Comm. Algebra 31 (2003), no. 8, 3811–3827. Special issue in honor of Steven L. Kleiman. MR 2007386, DOI https://doi.org/10.1081/AGB-120022444
- Terence Gaffney, Polar methods, invariants of pairs of modules and equisingularity, Real and complex singularities, Contemp. Math., vol. 354, Amer. Math. Soc., Providence, RI, 2004, pp. 113–135. MR 2087808, DOI https://doi.org/10.1090/conm/354/06478
- Terence Gaffney, The multiplicity of pairs of modules and hypersurface singularities, Real and complex singularities, Trends Math., Birkhäuser, Basel, 2007, pp. 143–168. MR 2280137, DOI https://doi.org/10.1007/978-3-7643-7776-2_11
- Terence Gaffney, The multiplicity of pairs of modules and hypersurface singularities, Real and complex singularities, Trends Math., Birkhäuser, Basel, 2007, pp. 143–168. MR 2280137, DOI https://doi.org/10.1007/978-3-7643-7776-2_11
- Terence Gaffney and Steven L. Kleiman, Specialization of integral dependence for modules, Invent. Math. 137 (1999), no. 3, 541–574. MR 1709870, DOI https://doi.org/10.1007/s002220050335
- Mark Goresky and Robert MacPherson, Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer-Verlag, Berlin, 1988. MR 932724
- G.-M. Greuel, Der Gauss-Manin-Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten, Math. Ann. 214 (1975), 235–266. MR 396554, DOI https://doi.org/10.1007/BF01352108
- Steven Kleiman and Anders Thorup, A geometric theory of the Buchsbaum-Rim multiplicity, J. Algebra 167 (1994), no. 1, 168–231. MR 1282823, DOI https://doi.org/10.1006/jabr.1994.1182
- S. Kleiman and A. Thorup, The exceptional fiber of a generalized conormal space, in “New Developments in Singularity Theory.” D. Siersma, C.T.C. Wall and V. Zakalyukin (eds.), Nato Science series, II Mathematics, Physics and Chemistry-Vol. 21 2001 401-404.
- D. T. Lê, Calculation of Milnor number of isolated singularity of complete intersection, Funct. Anal. 8 (1974), 127–31.
- Lê Dũng Tráng, Le concept de singularité isolée de fonction analytique, Complex analytic singularities, Adv. Stud. Pure Math., vol. 8, North-Holland, Amsterdam, 1987, pp. 215–227 (French). MR 894295, DOI https://doi.org/10.2969/aspm/00810215
- Lê Dũng Tráng, Morsification of $\scr D$-modules, Bol. Soc. Mat. Mexicana (3) 4 (1998), no. 2, 229–248. MR 1658264
- R. D. MacPherson, Chern classes for singular algebraic varieties, Ann. of Math. (2) 100 (1974), 423–432. MR 361141, DOI https://doi.org/10.2307/1971080
- David B. Massey, Lê cycles and hypersurface singularities, Lecture Notes in Mathematics, vol. 1615, Springer-Verlag, Berlin, 1995. MR 1441075
- David B. Massey, Hypercohomology of Milnor fibres, Topology 35 (1996), no. 4, 969–1003. MR 1404920, DOI https://doi.org/10.1016/0040-9383%2895%2900054-2
- David B. Massey, Numerical control over complex analytic singularities, Mem. Amer. Math. Soc. 163 (2003), no. 778, xii+268. MR 1962934, DOI https://doi.org/10.1090/memo/0778
- Gerardus Rudolf Pellikaan, Hypersurface singularities and resolutions of Jacobi modules, Drukkerij Elinkwijk B. V., Utrecht, 1985. Dissertation, Rijksuniversiteit te Utrecht, Utrecht, 1985; With a Dutch summary. MR 816348
- Jean-Pierre Serre, Local algebra, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000. Translated from the French by CheeWhye Chin and revised by the author. MR 1771925
- Bernard Teissier, Variétés polaires. II. Multiplicités polaires, sections planes, et conditions de Whitney, Algebraic geometry (La Rábida, 1981) Lecture Notes in Math., vol. 961, Springer, Berlin, 1982, pp. 314–491 (French). MR 708342, DOI https://doi.org/10.1007/BFb0071291
References
- J.-P. Brasselet, Existence des classes de Chern en théorie bivariante, Astérisque, vol. 101-102, 7–22, 1983. MR 737926 (85j:32019)
- J.-P. Brasselet, D. T. Lê, and J. Seade, Euler obstruction and indices of vector fields, Topology vol. 39, 1193-1208, 2000. MR 1783853 (2001i:32047)
- J.-P. Brasselet, D. Massey, A. J. Parameswaran and J. Seade, Euler Obstruction and Defects of Functions on Singular Varieties, J. London Math. Soc. (2) 70 (2004) 59-76. MR 2064752 (2005c:32037)
- J.-P. Brasselet and M.H. Schwartz, Sur les classes de Chern des ensembles analytiques complexes, Astérisque, vol. 82-83, 1981.
- W. Bruns and U. Vetter, Determinantal rings. Lecture Notes in Mathematics, 1327. Springer-Verlag, Berlin, 1988. MR 953963 (89i:13001)
- D. A. Buchsbaum and D. S. Rim, A generalized Koszul complex. II. Depth and multiplicity, Trans. Amer. Math. Soc. 111 (1963), 197–224. MR 0159860 (28:3076)
- W. Ebeling and S. M. Gusein-Zade, On the index of a vector field at an isolated singularity, The Arnoldfest, edited by E. Bierstone et al., Fields Inst. Commun. 24, AMS, 1999, pp. 141-152. MR 1733572 (2001k:32053)
- W. Ebeling and S. M. Gusein-Zade, On the index of a holomorphic 1-form on an isolated complete intersection singularity, Doklady Math. 64 (2001), 221-224. MR 1875501 (2002k:32059)
- W. Ebeling and S. M. Gusein-Zade, Indices of 1-forms on an isolated complete intersection singularity, Moscow Math. J. 3, 439-455 (2003). MR 2025268 (2005b:14007)
- W. Ebeling, S. M. Gusein-Zade, and J. Seade, Homological index for 1-forms and a Milnor number for isolated singularities, Internat. J. Math. 15 (2004) 895-905. MR 2106152 (2005i:32027)
- W. Fulton, Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge $\cdot$ Band 2, Springer–Verlag, Berlin, 1984. MR 732620 (85k:14004)
- T. Gaffney, Aureoles and integral closure of modules, “Stratifications, Singularities and Differential Equations II”, Travaux en Cours 55, Herman, Paris, 1997, 55–62. MR 1473241 (99a:32053)
- T. Gaffney, Polar Multiplicities and Equisingularity of Map Germs, Topology 32 (1993), 185–223. MR 1204414 (94f:32072)
- T. Gaffney, Integral closure of modules and Whitney equisingularity, Invent. Math. 107 (1992), 301–22. MR 1144426 (93d:32055)
- T. Gaffney, Plane sections, $\mathrm {W}_f$ and $\mathrm {A}_f$, in “Real and complex singularities (São Carlos, 1998)”, Chapman and Hall Res. Notes Math. 412, 2000, 17-32. MR 2088465 (2005d:32001)
- T. Gaffney, Multiplicities and equisingularity of ICIS germs, Invent. Math. 123 (1996), 209–220. MR 1374196 (97b:32051)
- T. Gaffney, Generalized Buchsbaum-Rim Multiplicities and a Theorem of Rees, Communications in Algebra, vol 31 #8 p3811-3828, 2003. MR 2007386 (2004m:13063)
- T. Gaffney, Polar methods, invariants of pairs of modules and equisingularity, Real and Complex Singularities (Sao Carlos, 2002), Ed. T.Gaffney and M.Ruas, Contemp. Math., #354, Amer. Math. Soc., Providence, RI, June 2004, 113-136. MR 2087808 (2005f:32044)
- T.Gaffney, The multiplicity of pairs of modules and hypersurface singularities, Real and Complex Singularities (Sao Carlos, 2004), Trends in Mathematics, Birkhäuser 2006, 143-168. MR 2280137 (2008e:32037)
- T. Gaffney, The Multiplicity-Polar Theorem, preprint 2007, math.CV/0703650. MR 2280137 (2008e:32037)
- T. Gaffney and S. Kleiman, Specialization of integral dependence for modules, Invent. Math. 137 (1999), 541-574. MR 1709870 (2000k:32025)
- M. Goresky and R. MacPherson, Stratified Morse Theory, Springer-Verlag, (1988). MR 932724 (90d:57039)
- G. M. Greuel, Der Gauss–Manin Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten, Dissertation, Göttingen (1973), Math. Ann. 214 (1975), 235–266. MR 0396554 (53:417)
- S. Kleiman and A. Thorup, A geometric theory of the Buchsbaum–Rim multiplicity, J. Algebra 167 (1994), 168–231. MR 1282823 (96a:14007)
- S. Kleiman and A. Thorup, The exceptional fiber of a generalized conormal space, in “New Developments in Singularity Theory.” D. Siersma, C.T.C. Wall and V. Zakalyukin (eds.), Nato Science series, II Mathematics, Physics and Chemistry-Vol. 21 2001 401-404.
- D. T. Lê, Calculation of Milnor number of isolated singularity of complete intersection, Funct. Anal. 8 (1974), 127–31.
- D. T. Lê, Le concept de singularité isolée de fonction analytique, Advanced studies in pure math. 8 (1986), 215-227. MR 894295 (88d:32018)
- D. T. Lê, Morsification of D modules, Bol. Soc. Mat. Mexicana (3) 4 (1998), no. 2, 229–248. MR 1658264 (2000a:32063)
- R. MacPherson, Chern classes for singular varieties, Annals of Math, vol. 100, 423-432 1974. MR 0361141 (50:13587)
- D. Massey, Lê Cycles and Hypersurface Singularities, Springer Lecture Notes in Mathematics 1615, (1995). MR 1441075 (98h:32061)
- D. Massey, Hypercohomology of Milnor Fibers, Topology, v 35, #4, pp. 969–1003 (1996). MR 1404920 (97k:32055)
- D. Massey, Numerical Control over Complex Analytic Singularities, Memoirs of the AMS, #778, AMS 2003. MR 1962934 (2004d:32038)
- R. Pellikaan, Hypersurface singularities and resolutions of Jacobi modules, Thesis, Rijkuniversiteit Utrecht, (1985). MR 816348 (87j:32024)
- J. P. Serre, Local algebra. Translated from the French by CheeWhye Chin and revised by the author. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2000. MR 1771925 (2001b:13001)
- B. Teissier, Multiplicités polaires, sections planes, et conditions de Whitney, in “Proc. La Rábida, 1981.” J. M. Aroca, R. Buchweitz, M. Giusti and M. Merle (eds.), Lecture Notes in Math. 961 (1982), 314–491. MR 708342 (85i:32019)
Additional Information
Terence Gaffney
Affiliation:
Department of Mathematics, 567 Lake Hall, Northeastern University, Boston, Massachusetts 02115
Address at time of publication:
MSRI, 17 Gauss Way, Berkeley, California 94720-5070
MR Author ID:
70390
ORCID:
0000-0003-3420-0150
Email:
gaff@neu.edu
Received by editor(s):
April 26, 2007
Received by editor(s) in revised form:
January 11, 2008
Published electronically:
November 17, 2008
Article copyright:
© Copyright 2008
American Mathematical Society